目标检测tricks:mmdetection中的Ablu数据库增强
全部tricks解析如下:
代码以数智重庆.全球产业赋能创新大赛【赛场一】瓶盖数据为基准。
重点部分代码:
albu_train_transforms = [
# dict(
# type='HorizontalFlip',
# p=0.5),
# dict(
# type='VerticalFlip',
# p=0.5),
dict(
type='ShiftScaleRotate',
shift_limit=0.0625,
scale_limit=0.0,
rotate_limit=180,
interpolation=1,
p=0.5),
# dict(
# type='RandomBrightnessContrast',
# brightness_limit=[0.1, 0.3],
# contrast_limit=[0.1, 0.3],
# p=0.2),
# dict(
# type='OneOf',
# transforms=[
# dict(
# type='RGBShift',
# r_shift_limit=10,
# g_shift_limit=10,
# b_shift_limit=10,
# p=1.0),
# dict(
# type='HueSaturationValue',
# hue_shift_limit=20,
# sat_shift_limit=30,
# val_shift_limit=20,
# p=1.0)
# ],
# p=0.1),
# # dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2),
#
# dict(type='ChannelShuffle', p=0.1),
# dict(
# type='OneOf',
# transforms=[
# dict(type='Blur', blur_limit=3, p=1.0),
# dict(type='MedianBlur', blur_limit=3, p=1.0)
# ],
# p=0.1),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=[(4096, 800), (4096, 1200)], keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Pad', size_divisor=32),
dict(
type='Albu',
transforms=albu_train_transforms,
bbox_params=dict(
type='BboxParams',
format='pascal_voc',
label_fields=['gt_labels'],
min_visibility=0.0,
filter_lost_elements=True),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes'
},
update_pad_shape=False,
skip_img_without_anno=True),
dict(type='Normalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg',
'pad_shape', 'scale_factor')
)
]
全部代码:
# model settings
model = dict(
type='CascadeRCNN',
num_stages=3,
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), # CrossEntropyLoss/FocalLoss
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=[
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=8,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=8,
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1],
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=8,
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067],
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
])
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)
],
stage_loss_weights=[1, 0.5, 0.25])
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.01,
nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
keep_all_stages=False)
# dataset
dataset_type = 'CocoDataset'
data_root = './data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
albu_train_transforms = [
# dict(
# type='HorizontalFlip',
# p=0.5),
# dict(
# type='VerticalFlip',
# p=0.5),
dict(
type='ShiftScaleRotate',
shift_limit=0.0625,
scale_limit=0.0,
rotate_limit=180,
interpolation=1,
p=0.5),
# dict(
# type='RandomBrightnessContrast',
# brightness_limit=[0.1, 0.3],
# contrast_limit=[0.1, 0.3],
# p=0.2),
# dict(
# type='OneOf',
# transforms=[
# dict(
# type='RGBShift',
# r_shift_limit=10,
# g_shift_limit=10,
# b_shift_limit=10,
# p=1.0),
# dict(
# type='HueSaturationValue',
# hue_shift_limit=20,
# sat_shift_limit=30,
# val_shift_limit=20,
# p=1.0)
# ],
# p=0.1),
# # dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2),
#
# dict(type='ChannelShuffle', p=0.1),
# dict(
# type='OneOf',
# transforms=[
# dict(type='Blur', blur_limit=3, p=1.0),
# dict(type='MedianBlur', blur_limit=3, p=1.0)
# ],
# p=0.1),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=[(4096, 800), (4096, 1200)], keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Pad', size_divisor=32),
dict(
type='Albu',
transforms=albu_train_transforms,
bbox_params=dict(
type='BboxParams',
format='pascal_voc',
label_fields=['gt_labels'],
min_visibility=0.0,
filter_lost_elements=True),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes'
},
update_pad_shape=False,
skip_img_without_anno=True),
dict(type='Normalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg',
'pad_shape', 'scale_factor')
)
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale = (4096, 1000),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
imgs_per_gpu=2,
workers_per_gpu=3,
train=dict(
type=dataset_type,
ann_file=data_root + 'first_pinggai/bottle/annotations/instances_train2017.json',
img_prefix=data_root + 'first_pinggai/bottle/images/train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'first_pinggai/bottle/annotations/instances_val2017.json',
img_prefix=data_root + 'first_pinggai/bottle/images/val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'first_pinggai/bottle/annotations/instances_val2017.json',
img_prefix=data_root + 'first_pinggai/bottle/images/val2017/',
pipeline=test_pipeline)
)
# optimizer
optimizer = dict(type='SGD', lr= 0.005, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardL0oggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 50
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/HRo_cascade50_pinggai_1400'
load_from = './checkpoints/cascade_rcnn_r50_fpn_1x_20190501-3b6211ab.pth'
resume_from = None
workflow = [('train', 1)]
转载:https://zhuanlan.zhihu.com/p/125036517
本文来自博客园,作者:海_纳百川,转载请注明原文链接:https://www.cnblogs.com/chentiao/p/16335957.html,如有侵权联系删除