Loading

Medium | LeetCode 130. 被围绕的区域 | 矩阵 + DFS

130. 被围绕的区域

给你一个 m x n 的矩阵 board ,由若干字符 'X''O' ,找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O''X' 填充。

示例 1:

img
输入:board = [["X","X","X","X"],["X","O","O","X"],["X","X","O","X"],["X","O","X","X"]]
输出:[["X","X","X","X"],["X","X","X","X"],["X","X","X","X"],["X","O","X","X"]]
解释:被围绕的区间不会存在于边界上,换句话说,任何边界上的 'O' 都不会被填充为 'X'。 任何不在边界上,或不与边界上的 'O' 相连的 'O' 最终都会被填充为 'X'。如果两个元素在水平或垂直方向相邻,则称它们是“相连”的。

示例 2:

输入:board = [["X"]]
输出:[["X"]]

提示:

  • m == board.length
  • n == board[i].length
  • 1 <= m, n <= 200
  • board[i][j]'X''O'

解体方法

常规的DFS搜索题目。需要区分边界节点和内部节点。先从边界使用DFS算法将搜索到的'O'字符变成'A'。这样剩下的'O'节点就都是内部节点了。然后'A'节点就都是原来的'O'节点。最后扫描一遍二维数组, 将'A'节点还原成'O'节点, 将剩下的'O'节点变成'X'节点。

public void solve(char[][] board) {
    if (board.length == 0) {
        return;
    }
    int row = board.length, colume = board[0].length;
    // 从四个边界进行DFS搜索
    for (int i = 0; i < row; i++) {
        // 左边界
        dfs(board, i , 0);
        // 右边界
        dfs(board, i, colume - 1);
    }
    for (int i = 0; i < colume; i++) {
        // 上边界
        dfs(board, 0, i);
        // 下边界
        dfs(board, row - 1, i);
    }
    for (int i = 0; i < row; i++) {
        for (int j = 0; j < colume; j++) {
            if (board[i][j] == 'A') {
                board[i][j] = 'O';
            } else if (board[i][j] == 'O') {
                board[i][j] = 'X';
            }
        }
    }
}

private void dfs(char[][] board, int x, int y) {
    if (x < 0 || x >= board.length || y < 0 || y >= board[0].length || board[x][y] != 'O') {
        return;
    }
    board[x][y] = 'A';
    dfs(board, x - 1, y);
    dfs(board, x, y + 1);
    dfs(board, x + 1, y);
    dfs(board, x, y - 1);
}
posted @ 2021-05-01 22:17  反身而诚、  阅读(34)  评论(0编辑  收藏  举报