Loading

Medium | LeetCode 48. 旋转图像 | 矩阵旋转

48. 旋转图像

给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

示例 1:

img
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]

示例 2:

img
输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

示例 3:

输入:matrix = [[1]]
输出:[[1]]

示例 4:

输入:matrix = [[1,2],[3,4]]
输出:[[3,1],[4,2]]

提示:

  • matrix.length == n
  • matrix[i].length == n
  • 1 <= n <= 20
  • -1000 <= matrix[i][j] <= 1000

解题思路

方形矩阵旋转公式

\[\left\{\begin{array}{ll} \text { temp } & =\operatorname{matrix}[\operatorname{row}][\operatorname{col}] \\ \text { matrix }[\text { row }][\operatorname{col}] & =\operatorname{matrix}[n-\operatorname{col}-1][\operatorname{row}] \\ \text { matrix }[n-\operatorname{col}-1][\text { row }] & =\operatorname{matrix}[n-\operatorname{row}-1][n-\operatorname{col}-1] 2 \\ \text { matrix }[n-\operatorname{row}-1][n-\operatorname{col}-1] & =\operatorname{matrix}[\operatorname{col}[n-\text { row }-1] \\ \operatorname{matrix}[\operatorname{col}[n-\operatorname{row}-1] & =t e m p \end{array}\right. \]

public void rotate(int[][] matrix) {
    int n = matrix.length;
    for (int i = 0; i < n / 2; ++i) {
        for (int j = 0; j < (n + 1) / 2; ++j) {
            int temp = matrix[i][j];
            matrix[i][j] = matrix[n - j - 1][i];
            matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
            matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1];
            matrix[j][n - i - 1] = temp;
        }
    }
}
posted @ 2021-02-27 17:40  反身而诚、  阅读(53)  评论(0编辑  收藏  举报