进程队列补充-创建进程队列的另一个类JoinableQueue

JoinableQueue同样通过multiprocessing使用。

创建队列的另外一个类:

    JoinableQueue([maxsize]):这就像是一个Queue对象,但队列允许项目的使用者通知生成者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。

参数介绍:

    maxsize是队列中允许最大项数,省略则无大小限制。  
方法介绍:
    JoinableQueue的实例p除了与Queue对象相同的方法之外还具有:
    q.task_done():使用者使用此方法发出信号,表示q.get()的返回项目已经被处理。如果调用此方法的次数大于从队列中删除项目的数量,将引发ValueError异常
    q.join():生产者调用此方法进行阻塞,直到队列中所有的项目均被处理。阻塞将持续到队列中的每个项目均调用q.task_done()方法为止
示例1:
复制代码
from multiprocessing import Process,JoinableQueue
import time,random
def consumer(q):
    while True:
        time.sleep(random.randint(1,5))
        res=q.get()
        print('消费者拿到了 %s' %res)
        q.task_done()

def producer(seq,q):
    for item in seq:
        time.sleep(random.randrange(1,2))
        q.put(item)
        print('生产者做好了 %s' %item)
    q.join()

if __name__ == '__main__':
    q=JoinableQueue()
    seq=('包子%s' %i for i in range(10))
    p=Process(target=consumer,args=(q,))
    p.daemon=True #设置为守护进程,在主线程停止时p也停止,但是不用担心,producer内调用q.join保证了consumer已经处理完队列中的所有元素
    p.start()

    producer(seq,q)

    print('主线程')
复制代码

示例2:


from multiprocessing import Process,JoinableQueue
import time,random
def consumer(name,q):
    while True:
        time.sleep(random.randint(1,2))
        res=q.get()
        print('\033[45m%s拿到了 %s\033[0m' %(name,res))
        q.task_done()


def producer(seq,q):
    for item in seq:
        time.sleep(random.randrange(1,2))
        q.put(item)
        print('\033[46m生产者做好了 %s\033[0m' %item)
    q.join()

if __name__ == '__main__':
    q=JoinableQueue()
    seq=('包子%s' %i for i in range(10))

    p1=Process(target=consumer,args=('消费者1',q,))
    p2=Process(target=consumer,args=('消费者2',q,))
    p3=Process(target=consumer,args=('消费者3',q,))
    p1.daemon=True
    p2.daemon=True
    p3.daemon=True
    p1.start()
    p2.start()
    p3.start()

    producer(seq,q)

    print('主线程')
复制代码

复制代码
from multiprocessing import Process,JoinableQueue
import time,random
def consumer(name,q):
    while True:
        time.sleep(random.randint(1,2))
        res=q.get()
        print('\033[45m%s拿到了 %s\033[0m' %(name,res))
        q.task_done()


def producer(seq,q):
    for item in seq:
        time.sleep(random.randrange(1,2))
        q.put(item)
        print('\033[46m生产者做好了 %s\033[0m' %item)
    q.join()

if __name__ == '__main__':
    q=JoinableQueue()
    seq=('包子%s' %i for i in range(10))

    p1=Process(target=consumer,args=('消费者1',q,))
    p2=Process(target=consumer,args=('消费者2',q,))
    p3=Process(target=consumer,args=('消费者3',q,))
    p1.daemon=True
    p2.daemon=True
    p3.daemon=True
    p1.start()
    p2.start()
    p3.start()

    producer(seq,q)

    print('主线程')
复制代码

示例3:

from multiprocessing import Process,JoinableQueue
import time,random
def consumer(name,q):
    while True:
        # time.sleep(random.randint(1,2))
        res=q.get()
        print('\033[45m%s拿到了 %s\033[0m' %(name,res))
        q.task_done()


def producer(seq,q):
    for item in seq:
        # time.sleep(random.randrange(1,2))
        q.put(item)
        print('\033[46m生产者做好了 %s\033[0m' %item)
    q.join()

if __name__ == '__main__':
    q=JoinableQueue()
    seq=['包子%s' %i for i in range(10)] #在windows下无法传入生成器,我们可以用列表解析测试

    p1=Process(target=consumer,args=('消费者1',q,))
    p2=Process(target=consumer,args=('消费者2',q,))
    p3=Process(target=consumer,args=('消费者3',q,))
    p1.daemon=True
    p2.daemon=True
    p3.daemon=True
    p1.start()
    p2.start()
    p3.start()

    # producer(seq,q) #也可以是下面三行的形式,开启一个新的子进程当生产者,不用主线程当生产者
    p4=Process(target=producer,args=(seq,q))
    p4.start()
    p4.join()
    print('主线程')

 

posted @ 2017-08-14 19:07  云养猫  阅读(180)  评论(0编辑  收藏  举报