线程、进程、协程
并行:并行是指两者同时执行,比如赛跑,两个人都在不停的往前跑;(资源够用,比如三个线程,四核的CPU )
并发:并发是指资源有限的情况下,两者交替轮流使用资源,比如一段路(单核CPU资源)同时只能过一个人,A走一段后,让给B,B用完继续给A ,交替使用,目的是提高效率。
同步:所谓同步就是一个任务的完成需要依赖另外一个任务时,只有等待被依赖的任务完成后,依赖的任务才能算完成,这是一种可靠的任务序列。
异步:所谓异步是不需要等待被依赖的任务完成,只是通知被依赖的任务要完成什么工作,依赖的任务也立即执行,只要自己完成了整个任务就算完成了。
阻塞非阻塞:阻塞和非阻塞这两个概念与程序(线程)等待消息通知(无所谓同步或者异步)时的状态有关。也就是说阻塞与非阻塞主要是程序(线程)等待消息通知时的状态角度来说的。
python的GIL:无论你启多少个线程,你有多少个cpu, Python在执行的时候会淡定的在同一时刻只允许一个线程运行。这两个
Python根据处理事情的类型,是IO密集型还是计算密集型,选择不同的方式,进程,线程、协程,相互配合来用。但是对于计算密集型,。。。
一. 线程:
线程也叫轻量级进程,它是一个基本的CPU执行单元,也是程序执行过程中的最小单元,由线程ID、程序计数器、寄存器集合和堆栈共同组成。
线程的引入减小了程序并发执行时的开销,提高了操作系统的并发 性能。线程没有自己的系统资源。
<python的线程与threading模块>
直接调用:
import threading
import time
def sayhi(num): #定义每个线程要运行的函数
print("running on number:%s" %num)
time.sleep(3)
if __name__ == '__main__':
t1 = threading.Thread(target=sayhi,args=(1,)) #生成一个线程实例
t2 = threading.Thread(target=sayhi,args=(2,)) #生成另一个线程实例
t1.start() #启动线程
t2.start() #启动另一个线程
print(t1.getName()) #获取线程名
print(t2.getName())
继承式调用:
import threading
import time
class MyThread(threading.Thread):
def __init__(self,num):
threading.Thread.__init__(self)
self.num = num
def run(self):#定义每个线程要运行的函数
print("running on number:%s" %self.num)
time.sleep(3)
if __name__ == '__main__':
t1 = MyThread(1)
t2 = MyThread(2)
t1.start()
t2.start()
print("ending......")
join():在子线程完成运行之前,这个子线程的父线程将一直被阻塞。
setDaemon(True):
将线程声明为守护线程,必须在start() 方法调用之前设置, 如果不设置为守护线程程序会被无限挂起。这个方法基本和join是相反的。当我们 在程序运行中,执行一个主线程,如果主线程又创建一个子线程,主线程和子线程 就分兵两路,分别运行,那么当主线程完成 想退出时,会检验子线程是否完成。如 果子线程未完成,则主线程会等待子线程完成后再退出。但是有时候我们需要的是 只要主线程完成了,不管子线程是否完成,都要和主线程一起退出,这时就可以 用setDaemon方法啦
# run(): 线程被cpu调度后自动执行线程对象的run方法
# start():启动线程活动。
# isAlive(): 返回线程是否活动的。
# getName(): 返回线程名。
# setName(): 设置线程名。
threading模块提供的一些方法:
# threading.currentThread(): 返回当前的线程变量。
# threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
# threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。
关于锁:
因为线程能直接操作到进程里的所有变量,如果存在多个线程同时操作同一个变量,存在竞争,最后变量是什么样的都不知道,所以在线程需要操作变量前,进行取锁竞争,
拿到锁的线程才能对变量操作,操作完后释放锁。意味着同时时刻只有一个线程运行那部分代码。
1. threading.Lock() 同步锁
import time
import threading
R=threading.Lock()
def addNum():
global num #在每个线程中都获取这个全局变量
#num-=1
R.acquire()
temp=num
#print('--get num:',num )
time.sleep(0.01)
num =temp-1 #对此公共变量进行-1操作
R.release()
num = 100 #设定一个共享变量
thread_list = []
for i in range(100):
t = threading.Thread(target=addNum)
t.start()
thread_list.append(t)
for t in thread_list: #等待所有线程执行完毕
t.join()
print('final num:', num )
为了支持在同一线程中多次请求同一资源,python提供了“可重入锁”:threading.RLock。RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次acquire。直到一个线程所有的acquire都被release,其他的线程才能获得资源。
2. threading.RLock() 递归锁
import threading
import time
class MyThread(threading.Thread):
def actionA(self):
r_lcok.acquire() #count=1
print(self.name,"gotA",time.ctime())
time.sleep(2)
r_lcok.acquire() #count=2
print(self.name, "gotB", time.ctime())
time.sleep(1)
r_lcok.release() #count=1
r_lcok.release() #count=0
def actionB(self):
r_lcok.acquire()
print(self.name, "gotB", time.ctime())
time.sleep(2)
r_lcok.acquire()
print(self.name, "gotA", time.ctime())
time.sleep(1)
r_lcok.release()
r_lcok.release()
def run(self):
self.actionA()
self.actionB()
if __name__ == '__main__':
# A=threading.Lock()
# B=threading.Lock()
r_lcok=threading.RLock()
L=[]
for i in range(5):
t=MyThread()
t.start()
L.append(t)
for i in L:
i.join()
print("ending....")
3. 关于 event事件
Python线程的 event 事件 可以看做是 事件驱动模型。当一个线程通过事件驱动模型发送了一个信号,另一个线程通过事件驱动模型获取了该信号,从而做出反应。
只是这个模型比较简单,发送的信号默认是 false ,要么是 true。
event = threading.Event()
event.is_set() event.isSet() # 获取标志位 是 true 还是 false
event.set() # 设置标志位 为 true
event.clear() # 初始化标志位 为 false
event.wait() # 阻塞等待标志位 为 true 才会继续运行
栗子:
from threading import Thread,Event
import time
event=Event()
def light():
print('红灯正亮着')
time.sleep(3)
event.set() #绿灯亮
def car(name):
print('车%s正在等绿灯' %name)
event.wait() #等灯绿 此时event为False,直到event.set()将其值设置为True,才会继续运行.
print('车%s通行' %name)
if __name__ == '__main__':
# 红绿灯
t1=Thread(target=light)
t1.start()
# 车
for i in range(10):
t=Thread(target=car,args=(i,))
t.start()
4. 信号量 —— multiprocess.Semaphore
信号量是比同步锁还能多设置的方式。同步锁只有一把,而信号量可以设置多把锁。信号量同步基于内部计数器,每调用一次acquire(),计数器减1;每调用一次release(),计数器加1.当计数器为0时,acquire()调用被阻塞。这是迪科斯彻(Dijkstra)信号量概念P()和V()的Python实现。信号量同步机制适用于访问像服务器这样的有限资源。
信号量与进程池的概念很像,但是要区分开,信号量涉及到加锁的概念
进程信号量
from multiprocessing import Process,Semaphore
import time,random
def go_ktv(sem,user):
sem.acquire()
print('%s 占到一间ktv小屋' %user)
time.sleep(random.randint(0,3)) #模拟每个人在ktv中待的时间不同
sem.release()
if __name__ == '__main__':
sem=Semaphore(4)
p_l=[]
for i in range(13):
p=Process(target=go_ktv,args=(sem,'user%s' %i,))
p.start()
p_l.append(p)
for i in p_l:
i.join()
print('============》')
# coding: utf-8
import threading
import time
import random
semaphore = threading.Semaphore(0)
def consumer():
print("Consumer is waiting.")
semaphore.acquire()
print("Consumer notify: Consumed item number %s" %item)
def producer():
global item
time.sleep(10)
item = random.randint(0, 100)
print("Producer notify: Produced item number %s" %item)
semaphore.release()
if __name__ == "__main__":
for i in range(0, 5):
t1 = threading.Thread(target=producer)
t2 = threading.Thread(target=consumer)
t1.start()
t2.start()
t1.join()
t2.join()
print("Program terminated")
5. 队列 queue-----线程利器, 利用队列,组合 生产者消费模型
创建一个“队列”对象
import queue # python 3 是 queue Python2 是 Queue
q = queue.Queue(maxsize = 10)
Queue.Queue类即是一个队列的同步实现。队列长度可为无限或者有限。可通过Queue的构造函数的可选参数maxsize来设定队列长度。如果maxsize小于1就表示队列长度无限。
将一个值放入队列中
q.put(10)
调用队列对象的put()方法在队尾插入一个项目。put()有两个参数,第一个item为必需的,为插入项目的值;第二个block为可选参数,默认为
1。如果队列当前为空且block为1,put()方法就使调用线程暂停,直到空出一个数据单元。如果block为0,put方法将引发Full异常。
将一个值从队列中取出
q.get()
调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为True。如果队列为空且block为True,
get()就使调用线程暂停,直至有项目可用。如果队列为空且block为False,队列将引发Empty异常。
Python Queue模块有三种队列及构造函数:
1、Python Queue模块的FIFO队列先进先出。 class queue.Queue(maxsize)
2、LIFO类似于堆,即先进后出。 class queue.LifoQueue(maxsize)
3、还有一种是优先级队列级别越低越先出来。 class queue.PriorityQueue(maxsize)
此包中的常用方法(q = Queue.Queue()):
q.qsize() 返回队列的大小
q.empty() 如果队列为空,返回True,反之False
q.full() 如果队列满了,返回True,反之False
q.full 与 maxsize 大小对应
q.get([block[, timeout]]) 获取队列,timeout等待时间
q.get_nowait() 相当q.get(False)
非阻塞 q.put(item) 写入队列,timeout等待时间
q.put_nowait(item) 相当q.put(item, False)
q.task_done() 在完成一项工作之后,q.task_done() 函数向任务已经完成的队列发送一个信号
q.join() 实际上意味着等到队列为空,再执行别的操作
import threading
import time
import queue
class MyThread(threading.Thread):
def __init__(self, num):
threading.Thread.__init__(self)
self.num = num
def run(self): # 定义每个线程要运行的函数
num = qq.get() # 队列里没有就会阻塞等待
numb = num -1
time.sleep(0.1)
num = numb
print("running on number:%s" % self.name,num)
qq.put(num)
if __name__ == '__main__':
qq= queue.Queue()
qq.put(100)
tl = []
for i in range(100):
th = MyThread(i)
tl.append(th)
for th in tl:
th.start()
for th in tl:
th.join()
print("ending......", qq.get())
import time,random
import queue,threading
q = queue.Queue()
def Producer(name):
count = 0
while count <10:
print("making........")
time.sleep(5)
q.put(count)
print('Producer %s has produced %s baozi..' %(name, count))
count +=1
#q.task_done()
q.join()
print("ok......")
def Consumer(name):
count = 0
while count <10:
time.sleep(random.randrange(4))
# if not q.empty():
# print("waiting.....")
#q.join()
data = q.get()
print("eating....")
time.sleep(4)
q.task_done()
#print(data)
print('\033[32;1mConsumer %s has eat %s baozi...\033[0m' %(name, data))
# else:
# print("-----no baozi anymore----")
count +=1
p1 = threading.Thread(target=Producer, args=('A君',))
c1 = threading.Thread(target=Consumer, args=('B君',))
c2 = threading.Thread(target=Consumer, args=('C君',))
c3 = threading.Thread(target=Consumer, args=('D君',))
p1.start()
c1.start()
c2.start()
c3.start()
二. 进程
Python的多进程,multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。该进程可以运行在Python程序内部编写的函数。该Process对象与Thread对象的用法相同,也有start(), run(), join()的方法。此外multiprocessing包中也有Lock/Event/Semaphore/Condition类 (这些对象可以像多线程那样,通过参数传递给各个进程),用以同步进程,其用法与threading包中的同名类一致。所以,multiprocessing的很大一部份与threading使用同一套API,只不过换到了多进程的情境。
多进程、多线程里的 run 方法 和 start 方法不一样的。
1. 调用方式
from multiprocessing import Process
import time
def f(name):
time.sleep(1)
print('hello', name,time.ctime())
if __name__ == '__main__':
p_list=[]
for i in range(3):
p = Process(target=f, args=('alvin',))
p_list.append(p)
p.start()
for i in p_list:
p.join()
print('end')
类的方式
from multiprocessing import Process
import time
class MyProcess(Process):
def __init__(self):
super(MyProcess, self).__init__()
#self.name = name
def run(self):
time.sleep(1)
print ('hello', self.name,time.ctime())
if __name__ == '__main__':
p_list=[]
for i in range(3):
p = MyProcess()
p.start()
p_list.append(p)
for p in p_list:
p.join()
print('end')
Process 模块介绍
Process([group, [target, [name, [args, [kwargs ]]]])
强调:
1. 需要使用关键字的方式来指定参数
2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号
参数介绍:
group参数未使用,值始终为None
target表示调用对象,即子进程要执行的任务
args表示调用对象的位置参数元组,args=(1,2,'egon',)
kwargs表示调用对象的字典,kwargs={'name':'egon','age':18}
name为子进程的名称
方法介绍
p.start():启动进程,并调用该子进程中的p.run() 。
p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法
p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。
如果p还保存了一个锁那么也将不会被释放,进而导致死锁。
p.is_alive():如果p仍然运行,返回True。
p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。
timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程 。
属性介绍
p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,
并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置。
p.name:进程的名称。
p.pid:进程的pid 。
p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可) 。
p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。
这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)。
2. 进程间数据传输
数据传输而不是共享,两种方式,队列和管道。
队列 from multiprocessing import Queue
from multiprocessing import Queue
q=Queue([maxsize])
创建共享的进程队列。
参数 :maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。
底层队列使用管道和锁定实现.
Queue的实例q具有以下方法:
q.get( [ block [ ,timeout ] ] )
返回q中的一个项目。如果q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 如果设置为False,将引发Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。如果在制定的时间间隔内没有项目变为可用,将引发Queue.Empty异常。
q.get_nowait( )
同q.get(False)方法。
q.put(item [, block [,timeout ] ] )
将item放入队列。如果队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为True。如果设置为False,将引发Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引发Queue.Full异常。
q.qsize()
返回队列中目前项目的正确数量。此函数的结果并不可靠,因为在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引发NotImplementedError异常。
q.empty()
如果调用此方法时 q为空,返回True。如果其他进程或线程正在往队列中添加项目,结果是不可靠的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。
q.full()
如果q已满,返回为True. 由于线程的存在,结果也可能是不可靠的(参考q.empty()方法)。。
q.close()
关闭队列,防止队列中加入更多数据。调用此方法时,后台线程将继续写入那些已入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将自动调用此方法。关闭队列不会在队列使用者中生成任何类型的数据结束信号或异常。例如,如果某个使用者正被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。
q.cancel_join_thread()
不会再进程退出时自动连接后台线程。这可以防止join_thread()方法阻塞。
q.join_thread()
连接队列的后台线程。此方法用于在调用q.close()方法后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread()方法可以禁止这种行为。
from multiprocessing import Queue
'''
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
'''
from multiprocessing import Queue
q=Queue(3)
#put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
# q.put(3) # 如果队列已经满了,程序就会停在这里,等待数据被别人取走,再将数据放入队列。
# 如果队列中的数据一直不被取走,程序就会永远停在这里。
try:
q.put_nowait(3) # 可以使用put_nowait,如果队列满了不会阻塞,但是会因为队列满了而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。
print('队列已经满了')
# 因此,我们再放入数据之前,可以先看一下队列的状态,如果已经满了,就不继续put了。
print(q.full()) #满了
print(q.get())
print(q.get())
print(q.get())
# print(q.get()) # 同put方法一样,如果队列已经空了,那么继续取就会出现阻塞。
try:
q.get_nowait(3) # 可以使用get_nowait,如果队列满了不会阻塞,但是会因为没取到值而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去。
print('队列已经空了')
print(q.empty()) #空了
单看队列用法
import time
from multiprocessing import Process, Queue
def f(q):
q.put([time.asctime(), 'from Eva', 'hello']) #调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据。
if __name__ == '__main__':
q = Queue() #创建一个Queue对象
p = Process(target=f, args=(q,)) #创建一个进程
p.start()
print(q.get())
p.join()
子进程发送数据给父进程
from multiprocessing import Process, Pipe def f(conn): conn.send([12, {"name":"yuan"}, 'hello']) response=conn.recv() print("response",response) conn.close() print("q_ID2:",id(child_conn)) if __name__ == '__main__': parent_conn, child_conn = Pipe() print("q_ID1:",id(child_conn)) p = Process(target=f, args=(child_conn,)) p.start() print(parent_conn.recv()) # prints "[42, None, 'hello']" parent_conn.send("儿子你好!") p.join()