【K8S】Kubernetes控制器Controller-RS/Deployment/HPA详解

一 、介绍

Pod是kubernetes的最⼩管理单元,在kubernetes中,按照pod的创建方式可以将其分为两类:

  • 自主式pod:kubernetes直接创建出来的Pod,这种pod删除后就没有了,也不会重建

  • 控制器创建的pod:kubernetes通过控制器创建的pod,这种pod删除了之后还会自动重建

1、什么是Pod控制器

Pod控制器是管理pod的中间层,使用Pod控制器之后,只需要告诉Pod控制器,想要多少个什么样的Pod就可以了,它会创建出满足条件的Pod并确保每一个Pod资源处于用户期望的目标状态。如果Pod资源在运行中出现故障,它会基于指定策略重新编排Pod。 在kubernetes中,有很多类型的pod控制器,每种都有自己的适合的场景,常见的有下面这些:

ReplicationController:⽐较原始的pod控制器,已经被废弃,由ReplicaSet替代

ReplicaSet:保证副本数量⼀直维持在期望值,并支持pod数量扩缩容,镜像版本升级

Deployment:通过控制ReplicaSet来控制Pod,并支持滚动升级、回退版本

Horizontal Pod Autoscaler:可以根据集群负载自动水平调整Pod的数量,实现削峰填谷

DaemonSet:在集群中的指定Node上运⾏且仅运行一个副本,一般用于守护进程类的任务

Job:它创建出来的pod只要完成任务就立即退出,不需要重启或重建,用于执行一次性任务

Cronjob:它创建的Pod负责周期性任务控制,不需要持续后台运行

StatefulSet:管理有状态应用

二、Replication Controller(已废弃)

Replication Controller(RC)是 Kubernetes 系统中核心概念之一,当我们定义了一个 RC 并提交到 Kubernetes 集群中以后,Master 节点上的 Controller Manager 组件就得到通知, 定期检查系统中存活的 Pod,并确保目标 Pod 实例的数量刚好等于 RC 的预期值,如果有过 多或过少的 Pod 运行,系统就会停掉或创建一些 Pod.此外我们也可以通过修改 RC 的副本 数量,来实现 Pod 的动态缩放功能。

1
kubectl scale rc nginx --replicas=5

由于 Replication Controller 与 Kubernetes 代码中的模块 Replication Controller同名,所以在Kubernetesv1.2时,它就升级成了另外一个新的概念 Replica Sets,官方解释为 下一代的 RC,它与 RC 区别是:

Replica Sets支援基于集合的 Label selector,而 RC 只支持基于等式的LabelSelector。

我们很少单独使用Replica Set,它主要被Deployment这个更高层面的资源对象所使用,从而形成一整套Pod创建、删除、更新的编排机制。最好不要越过RC直接创建 Pod,因为ReplicationController会通过RC管理Pod副本,实现自动创建、补足、替换、删除Pod副本,这样就能提高应用的容灾能力,减少由于节点崩溃等意外状况造成的损失。即使应用程序只有一个Pod副本,也强烈建议使用RC来定义Pod。

三、Replica Set

ReplicaSet跟ReplicationController没有本质的不同,只是名字不一样,并且ReplicaSet支持集合式的selector(ReplicationController 仅支持等式)。Kubernetes官方强烈建议避免直接使用ReplicaSet,而应该通过Deployment来创建RS和Pod。由于ReplicaSet是 ReplicationController的代替物,因此用法基本相同,唯一的区别在于ReplicaSet支持集合式的selector。

1、主要作用

保证一定数量的pod正常运行,它会持续监听这些Pod的运行状态,一旦Pod发生故障,就会重启或重建。同时它还支持对pod数量的扩缩容和镜像版本的升降级。

2 资源清单文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
apiVersion: apps/v1 # 版本号
kind: ReplicaSet # 类型
metadata: # 元数据
name: # rs名称
namespace: # 所属命名空间
labels: #标签
controller: rs
spec: # 详情描述
replicas: 3 # 副本数量
selector: # 选择器,通过它指定该控制器管理哪些pod
matchLabels: # Labels匹配规则
app: nginx-pod
matchExpressions: # Expressions匹配规则
- {key: app, operator: In, values: [nginx-pod]}
template: # 模板,当副本数量不⾜时,会根据下⾯的模板创建pod副本
metadata:
labels:
app: nginx-pod
spec:
containers:
- name: nginx
image: nginx:1.17.1
ports:
- containerPort: 80
# 在这里面,需要新了解的配置项就是spec下面几个选项:
replicas:指定副本数量,其实就是当前rs创建出来的pod的数量,默认为1
selector:选择器,它的作用是建立pod控制器和pod之间的关联关系,采用的Label Selector机制
在pod模板上定义label,在控制器上定义选择器,就可以表明当前控制器能管理哪些pod了
template:模板,就是当前控制器创建pod所使用的模板,里面其实就是pod的定义

3、创建RS

创建pc-replicaset.yaml⽂件,内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
apiVersion: apps/v1
kind: ReplicaSet
metadata:
    name: pc-replicaset
    namespace: cpz
spec:
   replicas: 3
   selector:
      matchLabels:
         app: nginx-pod
   template:
      metadata:
        labels:
          app: nginx-pod
      spec:
          containers:
           - name: nginx                                                                                                                                                                    
             image: nginx:1.17.1

创建 rs

1
2
[root@k8s-master01 ~]# kubectl create -f pc-replicaset.yaml
replicaset.apps/pc-replicaset created

查看 rs

  • DESIRED:期望副本数量 

  • CURRENT:当前副本数量   

  • READY:已经准备好提供服务的副本数量

1
2
3
[root@k8s-master01 ~]# kubectl get rs pc-replicaset -n cpz -o wide
NAME DESIRED CURRENT READY AGE CONTAINERS IMAGES SELECTOR
pc-replicaset 3 3 3 22s nginx nginx:1.17.1 app=nginxpod

查看当前控制器创建出来的pod、这⾥发现控制器创建出来的pod的名称是在控制器名称后⾯拼接了-xxxxx随机码

1
2
3
4
5
[root@k8s-master01 ~]# kubectl get pod -n cpz
NAME READY STATUS RESTARTS AGE
pc-replicaset-fsmvt  1/1 Running 0 54s
pc-replicaset-fmd8f  1/1 Running 0 54s
pc-replicaset-sssk2  1/1 Running 0 54s

4、扩缩容

1
2
3
4
5
6
7
8
9
10
11
12
# 编辑rs的副本数量,修改spec:replicas: 6即可
[root@k8s-master01 ~]# kubectl edit rs pc-replicaset -n cpz
replicaset.apps/pc-replicaset edited
<br># 查看pod
[root@k8s-master01 ~]# kubectl get pods -n cpz
NAME READY STATUS RESTARTS AGE
pc-replicaset-6vmvt 1/1 Running 0 114m
pc-replicaset-cftnp 1/1 Running 0 10s
pc-replicaset-fjlm6 1/1 Running 0 10s
pc-replicaset-fmb8f 1/1 Running 0 114m
pc-replicaset-s2whj 1/1 Running 0 10s
pc-replicaset-snrk2 1/1 Running 0 114m

当然也可以直接使⽤命令实现,使⽤scale命令实现扩缩容, 后⾯--replicas=n直接指定⽬标数量即可

1
kubectl scale rs pc-replicaset --replicas=2 -n cpz

5、镜像升级

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# 编辑rs的容器镜像 - image: nginx:1.17.2
[root@k8s-master01 ~]# kubectl edit rs pc-replicaset -n cpz
replicaset.apps/pc-replicaset edited
# 再次查看,发现镜像版本已经变更了
[root@k8s-master01 ~]# kubectl get rs -n cpz -o wide
NAME DESIRED CURRENT READY AGE CONTAINERS IMAGES ...
pc-replicaset 2 2 2 140m nginx nginx:1.17.2 ...
# 同样的道理,也可以使⽤命令完成这个⼯作
# kubectl set image rs rs名称 容器=镜像版本 -n namespace
[root@k8s-master01 ~]# kubectl set image rs pc-replicaset nginx=nginx:1.17.1 -n cpz
replicaset.apps/pc-replicaset image updated
# 再次查看,发现镜像版本已经变更了
[root@k8s-master01 ~]# kubectl get rs -n cpz -o wide
NAME DESIRED CURRENT READY AGE CONTAINERS IMAGES
...
pc-replicaset 2 2 2 145m nginx nginx:1.17.1 ...

6、删除ReplicaSet

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 使⽤kubectl delete命令会删除此RS以及它管理的Pod
# 在kubernetes删除RS前,会将RS的replicasclear调整为0,等待所有的Pod被删除后,在执⾏RS对象的删除
[root@k8s-master01 ~]# kubectl delete rs pc-replicaset -n cpz
replicaset.apps "pc-replicaset" deleted
[root@k8s-master01 ~]# kubectl get pod -n cpz -o wide
No resources found in dev namespace.
<br># 如果希望仅仅删除RS对象(保留Pod),可以使⽤kubectl delete命令时添加--cascade=false选项(不推
荐)。
[root@k8s-master01 ~]# kubectl delete rs pc-replicaset -n cpz  --cascade=false
replicaset.apps "pc-replicaset" deleted
[root@k8s-master01 ~]# kubectl get pods -n cpz
NAME READY STATUS RESTARTS AGE
pc-replicaset-cl82j 1/1 Running 0 75s
pc-replicaset-dslhb 1/1 Running 0 75s
 
# 也可以使⽤yaml直接删除(推荐)
[root@k8s-master01 ~]# kubectl delete -f pc-replicaset.yaml
replicaset.apps "pc-replicaset" deleted

三 、Deployment

Deployment是Kubenetes v1.2引入的新概念,引入的目的是为了更好的解决Pod的编排问题,Deployment并不直接管理pod,而是通过管理ReplicaSet来简介管理Pod,即:Deployment管理ReplicaSet,ReplicaSet管理Pod。所以Deployment比ReplicaSet功能更加强大。

Deployment的定义与Replica Set的定义很类似,除了API声明与Kind类型有所区别:

Deployment主要功能有下面几个:

  • 支持ReplicaSet的所有功能

  • 支持发布的停止、继续

  • 支持滚动升级和回滚版本

1、资源清单文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
apiVersion: apps/v1 # 版本号
kind: Deployment # 类型
metadata: # 元数据
name: # rs名称
namespace: # 所属命名空间
labels: #标签
controller: deploy
spec: # 详情描述
replicas: 3 # 副本数量
revisionHistoryLimit: 3 # 保留历史版本
paused: false # 暂停部署,默认是false
progressDeadlineSeconds: 600 # 部署超时时间(s),默认是600
strategy: # 策略
type: RollingUpdate # 滚动更新策略
rollingUpdate: # 滚动更新
maxSurge: 30% # 最⼤额外可以存在的副本数,可以为百分⽐,也可以为整数
maxUnavailable: 30% # 最⼤不可⽤状态的 Pod 的最⼤值,可以为百分⽐,也可以为整数
selector: # 选择器,通过它指定该控制器管理哪些pod
matchLabels: # Labels匹配规则
app: nginx-pod
matchExpressions: # Expressions匹配规则
- {key: app, operator: In, values: [nginx-pod]}
template: # 模板,当副本数量不⾜时,会根据下⾯的模板创建pod副本
metadata:
labels:
app: nginx-pod
spec:
containers:
- name: nginx
image: nginx:1.17.1
ports:
- containerPort: 80

2、创建deployment

创建pc-deployment.yaml,内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
apiVersion: apps/v1
kind: Deployment
metadata:
name: pc-deployment
namespace: dev
spec:
replicas: 3
selector:
matchLabels:
app: nginx-pod
template:
metadata:
labels:
app: nginx-pod
spec:
containers:
- name: nginx
image: nginx:1.17.1

创建deployment

1
2
[root@k8s-master01 ~]# kubectl create -f pc-deployment.yaml --record=true
deployment.apps/pc-deployment created

 查看deployment

UP-TO-DATE:最新版本的pod的数量
AVAILABLE:当前可⽤的pod的数量

1
[root@k8s-master01 ~]# kubectl get deploy pc-deployment -n cpz

查看RS, 发现 RS 的名称是在原来deployment的名字后⾯添加了⼀个10位数的随机串

1
[root@k8s-master01 ~]# kubectl get rs -n cpz

3、扩缩容

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# 变更副本数量为5个
[root@k8s-master01 ~]# kubectl scale deploy pc-deployment --replicas=5 -n dev
deployment.apps/pc-deployment scaled
# 查看deployment
[root@k8s-master01 ~]# kubectl get deploy pc-deployment -n dev
NAME READY UP-TO-DATE AVAILABLE AGE
pc-deployment 5/5 5 5 2m
# 查看pod
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME READY STATUS RESTARTS AGE
pc-deployment-6696798b78-d2c8n 1/1 Running 0 4m19s
pc-deployment-6696798b78-jxmdq 1/1 Running 0 93s
pc-deployment-6696798b78-smpvp 1/1 Running 0 4m19s
pc-deployment-6696798b78-wvjd8 1/1 Running 0 4m19s
# 编辑deployment的副本数量,修改spec:replicas: 4即可
[root@k8s-master01 ~]# kubectl edit deploy pc-deployment -n dev
deployment.apps/pc-deployment edited
# 查看pod
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME READY STATUS RESTARTS AGE
pc-deployment-6696798b78-d2c8n 1/1 Running 0 5m23s
pc-deployment-6696798b78-jxmdq 1/1 Running 0 2m38s
pc-deployment-6696798b78-smpvp 1/1 Running 0 5m23s
pc-deployment-6696798b78-wvjd8 1/1 Running 0 5m23s

4 、镜像更新

deployment支持两种更新策略: 重建更新和滚动更新 ,可以通过strategy指定策略类型,支持两个属性:

strategy:指定新的Pod替换旧的Pod的策略, 支持两个属性:

Recreate:在创建出新的Pod之前会先杀掉所有已存在的Pod

RollingUpdate:滚动更新,就是杀死一部分,就启动一部分,在更新过程中,存在两个版本Pod

rollingUpdate:当type为RollingUpdate时生效,用于为RollingUpdate设置参数,支持两个属性:

​​​​​​​maxUnavailable:用来指定在升级过程中不可用Pod的最大数量,默认为25%。

maxSurge: 用来指定在升级过程中可以超过期望的Pod的最大数量,默认为25%。

(1)重建更新

# 编辑pc-deployment.yaml,在spec节点下添加更新策略
spec:
strategy: # 策略
type: Recreate # 重建更新

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# 创建deploy进行验证
 
# 变更镜像
[root@k8s-master01 ~]# kubectl set image deployment pc-deployment nginx=nginx:1.17.2 -n
dev
deployment.apps/pc-deployment image updated
# 观察升级过程
[root@k8s-master01 ~]# kubectl get pods -n dev -w
NAME READY STATUS RESTARTS AGE
pc-deployment-5d89bdfbf9-65qcw 1/1 Running 0 31s
pc-deployment-5d89bdfbf9-w5nzv 1/1 Running 0 31s
pc-deployment-5d89bdfbf9-xpt7w 1/1 Running 0 31s
pc-deployment-5d89bdfbf9-xpt7w 1/1 Terminating 0 41s
pc-deployment-5d89bdfbf9-65qcw 1/1 Terminating 0 41s
pc-deployment-5d89bdfbf9-w5nzv 1/1 Terminating 0 41s
pc-deployment-675d469f8b-grn8z 0/1 Pending 0 0s
pc-deployment-675d469f8b-hbl4v 0/1 Pending 0 0s
pc-deployment-675d469f8b-67nz2 0/1 Pending 0 0s
pc-deployment-675d469f8b-grn8z 0/1 ContainerCreating 0 0s
pc-deployment-675d469f8b-hbl4v 0/1 ContainerCreating 0 0s
pc-deployment-675d469f8b-67nz2 0/1 ContainerCreating 0 0s
pc-deployment-675d469f8b-grn8z 1/1 Running 0 1s
pc-deployment-675d469f8b-67nz2 1/1 Running 0 1s
pc-deployment-675d469f8b-hbl4v 1/1 Running 0 2s

(2)滚动更新
编辑pc-deployment.yaml,在spec节点下添加更新策略
spec:

strategy: # 策略

type: RollingUpdate # 滚动更新策略

rollingUpdate:

maxSurge: 25%

maxUnavailable: 25%

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# 创建deploy进行验证
# 变更镜像
[root@k8s-master01 ~]# kubectl set image deployment pc-deployment nginx=nginx:1.17.3 -n
dev
deployment.apps/pc-deployment image updated
# 观察升级过程
[root@k8s-master01 ~]# kubectl get pods -n dev -w
NAME READY STATUS RESTARTS AGE
pc-deployment-c848d767-8rbzt 1/1 Running 0 31m
pc-deployment-c848d767-h4p68 1/1 Running 0 31m
pc-deployment-c848d767-hlmz4 1/1 Running 0 31m
pc-deployment-c848d767-rrqcn 1/1 Running 0 31m
pc-deployment-966bf7f44-226rx 0/1 Pending 0 0s
pc-deployment-966bf7f44-226rx 0/1 ContainerCreating 0 0s
pc-deployment-966bf7f44-226rx 1/1 Running 0 1s
pc-deployment-c848d767-h4p68 0/1 Terminating 0 34m
pc-deployment-966bf7f44-cnd44 0/1 Pending 0 0s
pc-deployment-966bf7f44-cnd44 0/1 ContainerCreating 0 0s
pc-deployment-966bf7f44-cnd44 1/1 Running 0 2s
pc-deployment-c848d767-hlmz4 0/1 Terminating 0 34m
pc-deployment-966bf7f44-px48p 0/1 Pending 0 0s
pc-deployment-966bf7f44-px48p 0/1 ContainerCreating 0 0s
pc-deployment-966bf7f44-px48p 1/1 Running 0 0s
pc-deployment-c848d767-8rbzt 0/1 Terminating 0 34m
pc-deployment-966bf7f44-dkmqp 0/1 Pending 0 0s
pc-deployment-966bf7f44-dkmqp 0/1 ContainerCreating 0 0s
pc-deployment-966bf7f44-dkmqp 1/1 Running 0 2s
pc-deployment-c848d767-rrqcn 0/1 Terminating 0 34m
# ⾄此,新版本的pod创建完毕,就版本的pod销毁完毕
# 中间过程是滚动进⾏的,也就是边销毁边创建
 
 
# 镜像更新中rs的变化
# 查看rs,发现原来的rs的依旧存在,只是pod数量变为了0,⽽后⼜新产⽣了⼀个rs,pod数量为4
# 其实这就是deployment能够进⾏版本回退的奥妙所在,deployment就是通过记录下历史rs来实现的,
# ⼀旦想回滚到哪个版本,只需要将当前版本pod数量降为0,然后将回滚版本的pod提升为⽬标数量就可以了
[root@k8s-master01 ~]# kubectl get rs -n dev
NAME DESIRED CURRENT READY AGE
pc-deployment-6696798b78 0 0 0 7m37s
pc-deployment-6696798b11 0 0 0 5m37s
pc-deployment-c848d76789 4 4 4 72s

5、版本回退

deployment支持版本升级过程中的暂停、继续功能以及版本回退等诸多功能,下面具体来看.

kubectl rollout: 版本升级相关功能,支持下面的选项:

  • status 显示当前升级状态

  • history 显示 升级历史记录

  • pause 暂停版本升级过程

  • resume 继续已经暂停的版本升级过程

  • restart 重启版本升级过程

  • undo 回滚到上一级版本(可以使用--to-revision回滚到指定版本)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# 查看当前升级版本的状态
[root@k8s-master01 ~]# kubectl rollout status deploy pc-deployment -n dev
deployment "pc-deployment" successfully rolled out
# 查看升级历史记录
[root@k8s-master01 ~]# kubectl rollout history deploy pc-deployment -n dev
deployment.apps/pc-deployment
REVISION CHANGE-CAUSE
1 kubectl create --filename=pc-deployment.yaml --record=true
2 kubectl create --filename=pc-deployment.yaml --record=true
3 kubectl create --filename=pc-deployment.yaml --record=true
# 可以发现有三次版本记录,说明完成过两次升级
# 版本回滚
# 这⾥直接使⽤--to-revision=1回滚到了1版本, 如果省略这个选项,就是回退到上个版本,就是2版本
[root@k8s-master01 ~]# kubectl rollout undo deployment pc-deployment --to-revision=1 -n dev
deployment.apps/pc-deployment rolled back
# 查看发现,通过nginx镜像版本可以发现到了第⼀版
[root@k8s-master01 ~]# kubectl get deploy -n dev -o wide
NAME READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES
pc-deployment 4/4 4 4 74m nginx nginx:1.17.1
# 查看rs,发现第⼀个rs中有4个pod运⾏,后⾯两个版本的rs中pod为运⾏
# 其实deployment之所以可是实现版本的回滚,就是通过记录下历史rs来实现的,
# ⼀旦想回滚到哪个版本,只需要将当前版本pod数量降为0,然后将回滚版本的pod提升为⽬标数量就可以了
[root@k8s-master01 ~]# kubectl get rs -n dev
NAME DESIRED CURRENT READY AGE
pc-deployment-6696798b78 4 4 4 78m
pc-deployment-966bf7f44 0 0 0 37m
pc-deployment-c848d767 0 0 0 71m

6、金丝雀发布

Deployment控制器⽀持控制更新过程中的控制,如“暂停(pause)”或“继续(resume)”更新操作。

例如有一批新的Pod资源创建完成后⽴即暂停更新过程,此时,仅存在一部分新版本的应用,主体部分还是旧的版本。然后,再筛选一小部分的用户请求路由到新版本的Pod应用,继续观察能否稳定地按期望的方式运行。确定没问题之后再继续完成余下的Pod资源滚动更新,否则立即回滚更新操作。这就是所谓的金丝雀发布。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# 更新deployment的版本,并配置暂停deployment
[root@k8s-master01 ~]# kubectl set image deploy pc-deployment nginx=nginx:1.17.4 -n
dev && kubectl rollout pause deployment pc-deployment -n dev
deployment.apps/pc-deployment image updated
deployment.apps/pc-deployment paused
#观察更新状态
[root@k8s-master01 ~]# kubectl rollout status deploy pc-deployment -n dev
Waiting for deployment "pc-deployment" rollout to finish: 2 out of 4 new replicas have
been updated...
# 监控更新的过程,可以看到已经新增了⼀个资源,但是并未按照预期的状态去删除⼀个旧的资源,就是因为使⽤了pause暂停命令
[root@k8s-master01 ~]# kubectl get rs -n dev -o wide
NAME DESIRED CURRENT READY AGE CONTAINERS IMAGES
pc-deployment-5d89bdfbf9 3 3 3 19m nginx nginx:1.17.1
pc-deployment-675d469f8b 0 0 0 14m nginx nginx:1.17.2
pc-deployment-6c9f56fcfb 2 2 2 3m16s nginx nginx:1.17.4
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME READY STATUS RESTARTS AGE
pc-deployment-5d89bdfbf9-rj8sq 1/1 Running 0 7m33s
pc-deployment-5d89bdfbf9-ttwgg 1/1 Running 0 7m35s
pc-deployment-5d89bdfbf9-v4wvc 1/1 Running 0 7m34s
pc-deployment-6c9f56fcfb-996rt 1/1 Running 0 3m31s
pc-deployment-6c9f56fcfb-j2gtj 1/1 Running 0 3m31s
# 确保更新的pod没问题了,继续更新
[root@k8s-master01 ~]# kubectl rollout resume deploy pc-deployment -n dev
deployment.apps/pc-deployment resumed
# 查看最后的更新情况
[root@k8s-master01 ~]# kubectl get rs -n dev -o wide
NAME DESIRED CURRENT READY AGE CONTAINERS IMAGES
 
pc-deployment-5d89bdfbf9 0 0 0 21m nginx nginx:1.17.1
pc-deployment-675d469f8b 0 0 0 16m nginx nginx:1.17.2
pc-deployment-6c9f56fcfb 4 4 4 5m11s nginx nginx:1.17.4
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME READY STATUS RESTARTS AGE
pc-deployment-6c9f56fcfb-7bfwh 1/1 Running 0 37s
pc-deployment-6c9f56fcfb-996rt 1/1 Running 0 5m27s
pc-deployment-6c9f56fcfb-j2gtj 1/1 Running 0 5m27s
pc-deployment-6c9f56fcfb-rf84v 1/1 Running 0 37s

7、删除deployment

1
2
3
# 删除deployment,其下的rs和pod也将被删除
[root@k8s-master01 ~]# kubectl delete -f pc-deployment.yaml
deployment.apps "pc-deployment" deleted

四、Horizontal Pod Autoscaler

1、原理

通过手工执行 kubectl scale命令实现Pod扩容或缩容,但是这显然不符合Kubernetes的定位目标--自动化、智能化。 Kubernetes期望可以实现通过监测Pod的使用情况,实现pod数量的自动调整,于是就产生了Horizontal Pod Autoscaler(HPA)这种控制器。
HPA可以获取每个Pod利用率,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现Pod的数量的调整。其实HPA与之前的Deployment一样,也属于一种Kubernetes资源对象,它通过追踪分析RC控制的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,这是HPA的实现原理。

HPA控制器基于Master的kube-controller-manager服务启动参数 --horizontal-pod- autoscaler-sync-period定义的时长(默认值为30s),周期性地监测Pod的CPU使用率,并在满足条件时对RC或Deployment中的Pod副本数量进行调整,以符合用户定义的平均Pod CPU使用率。

2 实验演示

(1)安装metrics-server
metrics-server可以用来收集集群中的资源使用情况

1
2
3
4
5
6
7
8
9
10
11
12
13
# 安装git
[root@k8s-master01 ~]# yum install git -y
# 获取metrics-server, 注意使⽤的版本
[root@k8s-master01 ~]# git clone -b v0.3.6 https://github.com/kubernetesincubator/metrics-server
# 修改deployment, 注意修改的是镜像和初始化参数
[root@k8s-master01 ~]# cd /root/metrics-server/deploy/1.8+/
[root@k8s-master01 1.8+]# vim metrics-server-deployment.yaml
按图中添加下⾯选项
hostNetwork: true
image: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.6
args:
- --kubelet-insecure-tls
- --kubelet-preferred-addresstypes=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP

安装metrics-server

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
[root@k8s-master01 1.8+]# kubectl apply -f ./
# 查看pod运⾏情况
[root@k8s-master01 1.8+]# kubectl get pod -n kube-system
metrics-server-6b976979db-2xwbj 1/1 Running 0 90s
# 使⽤kubectl top node 查看资源使⽤情况
[root@k8s-master01 1.8+]# kubectl top node
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
k8s-master01 289m 14% 1582Mi 54%
k8s-node01 81m 4% 1195Mi 40%
k8s-node02 72m 3% 1211Mi 41%
[root@k8s-master01 1.8+]# kubectl top pod -n kube-system
NAME CPU(cores) MEMORY(bytes)
coredns-6955765f44-7ptsb 3m 9Mi
coredns-6955765f44-vcwr5 3m 8Mi
etcd-master 14m 145Mi

⾄此,metrics-server安装完成

(2)准备deployment和servie

创建pc-hpa-pod.yaml文件,内容如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx
namespace: dev
spec:
strategy: # 策略
type: RollingUpdate # 滚动更新策略
replicas: 1
selector:
matchLabels:
app: nginx-pod
template:
metadata:
labels:
app: nginx-pod
spec:
containers:
- name: nginx
image: nginx:1.17.1
resources: # 资源配额
limits: # 限制资源(上限)
cpu: "1" # CPU限制,单位是core数
requests: # 请求资源(下限)
cpu: "100m" # CPU限制,单位是core数

创建deployment

1
2
[root@k8s-master01 1.8+]# kubectl run nginx --image=nginx:1.17.1 --requests=cpu=100m -n
dev

创建service

1
2
[root@k8s-master01 1.8+]# kubectl expose deployment nginx --type=NodePort --port=80 -n
dev

查看

1
2
3
4
5
6
7
[root@k8s-master01 1.8+]# kubectl get deployment,pod,svc -n dev
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/nginx 1/1 1 1 47s
NAME READY STATUS RESTARTS AGE
pod/nginx-7df9756ccc-bh8dr 1/1 Running 0 47s
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/nginx NodePort 10.101.18.29 <none> 80:31830/TCP 35s

(3)部署HPA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# 创建pc-hpa.yaml⽂件,内容如下:
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
name: pc-hpa
namespace: dev
spec:
minReplicas: 1 #最⼩pod数量
maxReplicas: 10 #最⼤pod数量
targetCPUUtilizationPercentage: 3 # CPU使⽤率指标
scaleTargetRef: # 指定要控制的nginx信息
apiVersion: /v1
kind: Deployment
name: nginx
 
 
# 创建hpa
[root@k8s-master01 1.8+]# kubectl create -f pc-hpa.yaml
horizontalpodautoscaler.autoscaling/pc-hpa created
# 查看hpa
[root@k8s-master01 1.8+]# kubectl get hpa -n dev
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
pc-hpa Deployment/nginx 0%/3% 1 10 1 62s

(4)测试

使用压测工具对service地址 192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化

hpa变化

1
2
3
4
5
6
7
8
9
10
11
[root@k8s-master01 ~]# kubectl get hpa -n dev -w
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
pc-hpa Deployment/nginx 0%/3% 1 10 1 4m11s
pc-hpa Deployment/nginx 0%/3% 1 10 1 5m19s
pc-hpa Deployment/nginx 22%/3% 1 10 1 6m50s
pc-hpa Deployment/nginx 22%/3% 1 10 4 7m5s
pc-hpa Deployment/nginx 22%/3% 1 10 8 7m21s
pc-hpa Deployment/nginx 6%/3% 1 10 8 7m51s
pc-hpa Deployment/nginx 0%/3% 1 10 8 9m6s
pc-hpa Deployment/nginx 0%/3% 1 10 8 13m
pc-hpa Deployment/nginx 0%/3% 1 10 1 14m

deployment变化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
[root@k8s-master01 ~]# kubectl get deployment -n dev -w
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 1/1 1 1 11m
nginx 1/4 1 1 13m
nginx 1/4 1 1 13m
nginx 1/4 1 1 13m
nginx 1/4 4 1 13m
nginx 1/8 4 1 14m
nginx 1/8 4 1 14m
nginx 1/8 4 1 14m
nginx 1/8 8 1 14m
nginx 2/8 8 2 14m
nginx 3/8 8 3 14m
nginx 4/8 8 4 14m
nginx 5/8 8 5 14m
nginx 6/8 8 6 14m
nginx 7/8 8 7 14m
nginx 8/8 8 8 15m
nginx 8/1 8 8 20m
nginx 8/1 8 8 20m
nginx 1/1 1 1 20m

pod变化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
[root@k8s-master01 ~]# kubectl get pods -n dev -w
NAME READY STATUS RESTARTS AGE
nginx-7df9756ccc-bh8dr 1/1 Running 0 11m
nginx-7df9756ccc-cpgrv 0/1 Pending 0 0s
nginx-7df9756ccc-8zhwk 0/1 Pending 0 0s
nginx-7df9756ccc-rr9bn 0/1 Pending 0 0s
nginx-7df9756ccc-cpgrv 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-8zhwk 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-rr9bn 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-m9gsj 0/1 Pending 0 0s
nginx-7df9756ccc-g56qb 0/1 Pending 0 0s
nginx-7df9756ccc-sl9c6 0/1 Pending 0 0s
nginx-7df9756ccc-fgst7 0/1 Pending 0 0s
nginx-7df9756ccc-g56qb 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-m9gsj 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-sl9c6 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-fgst7 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-8zhwk 1/1 Running 0 19s
nginx-7df9756ccc-rr9bn 1/1 Running 0 30s
nginx-7df9756ccc-m9gsj 1/1 Running 0 21s
nginx-7df9756ccc-cpgrv 1/1 Running 0 47s
nginx-7df9756ccc-sl9c6 1/1 Running 0 33s
nginx-7df9756ccc-g56qb 1/1 Running 0 48s
nginx-7df9756ccc-fgst7 1/1 Running 0 66s
nginx-7df9756ccc-fgst7 1/1 Terminating 0 6m50s
nginx-7df9756ccc-8zhwk 1/1 Terminating 0 7m5s
nginx-7df9756ccc-cpgrv 1/1 Terminating 0 7m5s
nginx-7df9756ccc-g56qb 1/1 Terminating 0 6m50s
nginx-7df9756ccc-rr9bn 1/1 Terminating 0 7m5s
nginx-7df9756ccc-m9gsj 1/1 Terminating 0 6m50s

  

 

posted @   踏雪无痕SS  阅读(244)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
历史上的今天:
2021-10-02 【Golang】Go 通过结构(struct) 实现接口(interface)
点击右上角即可分享
微信分享提示