朴素贝叶斯分类器
朴素贝叶斯分类器
一、贝叶斯定理
所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。
根据文氏图,可以发现
同理可得,
所以,
即
其中,
P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断;
P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估;
P(B|A)/P(B)称为"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率;
所以,条件概率可以理解成下面的式子:
后验概率 = 先验概率 x 调整因子
这就是贝叶斯推断的含义。我们先预估一个"先验概率",然后加入实验结果,看这个实验到底是增强还是削弱了"先验概率",由此得到更接近事实的"后验概率"。
在这里,如果"可能性函数"P(B|A)/P(B)>1,意味着"先验概率"被增强,事件A的发生的可能性变大;如果"可能性函数"=1,意味着B事件无助于判断事件A的可能性;如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小。
二、朴素贝叶斯分类器原理
假设某个体有n项特征(Feature),分别为F1、F2、...、Fn。现有m个类别(Category),分别为C1、C2、...、Cm。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值:
P(C|F1F2...Fn)
= P(F1F2...Fn|C)P(C) / P(F1F2...Fn)
由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求
P(F1F2...Fn|C)P(C)
的最大值。
朴素贝叶斯分类器则是更进一步,假设所有特征都彼此独立,因此
P(F1F2...Fn|C)P(C)
= P(F1|C)P(F2|C) ... P(Fn|C)P(C)
上式等号右边的每一项,都可以从统计资料中得到,由此就可以计算出每个类别对应的概率,从而找出最大概率的那个类。
虽然"所有特征彼此独立"这个假设,在现实中不太可能成立,但是它可以大大简化计算,而且有研究表明对分类结果的准确性影响不大。
三、应用
本例摘自张洋的《算法杂货铺----分类算法之朴素贝叶斯分类》。
根据某社区网站的抽样统计,该站10000个账号中有89%为真实账号(设为C0),11%为虚假账号(设为C1)。
C0 = 0.89
C1 = 0.11
接下来,就要用统计资料判断一个账号的真实性。假定某一个账号有以下三个特征:
F1: 日志数量/注册天数
F2: 好友数量/注册天数
F3: 是否使用真实头像(真实头像为1,非真实头像为0)F1 = 0.1
F2 = 0.2
F3 = 0
请问该账号是真实账号还是虚假账号?
方法是使用朴素贝叶斯分类器,计算下面这个计算式的值。
P(F1|C)P(F2|C)P(F3|C)P(C)
虽然上面这些值可以从统计资料得到,但是这里有一个问题:F1和F2是连续变量,不适宜按照某个特定值计算概率。
一个技巧是将连续值变为离散值,计算区间的概率。比如将F1分解成[0, 0.05]、(0.05, 0.2)、[0.2, +∞]三个区间,然后计算每个区间的概率。在我们这个例子中,F1等于0.1,落在第二个区间,所以计算的时候,就使用第二个区间的发生概率。
根据统计资料,可得:
P(F1|C0) = 0.5, P(F1|C1) = 0.1
P(F2|C0) = 0.7, P(F2|C1) = 0.2
P(F3|C0) = 0.2, P(F3|C1) = 0.9
因此,
P(F1|C0) P(F2|C0) P(F3|C0) P(C0)
= 0.5 x 0.7 x 0.2 x 0.89
= 0.0623P(F1|C1) P(F2|C1) P(F3|C1) P(C1)
= 0.1 x 0.2 x 0.9 x 0.11
= 0.00198
可以看到,虽然这个用户没有使用真实头像,但是他是真实账号的概率,比虚假账号高出30多倍,因此判断这个账号为真。
另一个例子摘自维基百科,关于处理连续变量的另一种方法。
下面是一组人类身体特征的统计资料。
性别 身高(英尺) 体重(磅) 脚掌(英寸)
男 6 180 12
男 5.92 190 11
男 5.58 170 12
男 5.92 165 10
女 5 100 6
女 5.5 150 8
女 5.42 130 7
女 5.75 150 9
已知某人身高6英尺、体重130磅,脚掌8英寸,请问该人是男是女?
根据朴素贝叶斯分类器,计算下面这个式子的值。
P(身高|性别) x P(体重|性别) x P(脚掌|性别) x P(性别)
这里的困难在于,由于身高、体重、脚掌都是连续变量,不能采用离散变量的方法计算概率。而且由于样本太少,所以也无法分成区间计算。怎么办?
这时,可以假设男性和女性的身高、体重、脚掌都是正态分布,通过样本计算出均值和方差,也就是得到正态分布的密度函数。有了密度函数,就可以把值代入,算出某一点的密度函数的值。
比如,男性的身高是均值5.855、方差0.035的正态分布。所以,男性的身高为6英尺的概率的相对值等于1.5789(大于1并没有关系,因为这里是密度函数的值,只用来反映各个值的相对可能性)。
有了这些数据以后,就可以计算性别的分类了。
P(身高=6|男) x P(体重=130|男) x P(脚掌=8|男) x P(男)
= 6.1984 x e-9P(身高=6|女) x P(体重=130|女) x P(脚掌=8|女) x P(女)
= 5.3778 x e-4
可以看到,女性的概率比男性要高出将近10000倍,所以判断该人为女性。
参考文档:
http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.html
http://www.ruanyifeng.com/blog/2013/12/naive_bayes_classifier.html