elasticsearch 连接查询 基于es5.1.1

ElasticSerch 的连接查询有两种方式实现

  • nested
  • parent和child关联查询

nested

  • 存储结构 
    nested的方式和其他字段一样,在同一个type里面存储,以数组的方式存储在 
    type里,格式如下:
PUT index_test/type_info/1000
{
  "userId": 1000,
  "mobile": "13301020202",
  "nick": "梅西",
  "vipType": 1,
  "vipPoints": 1200,
  "regTime": "2018-06-18 12:00:31",
  "order": [
    {
      "status": 1,
      "payMethod": 2,
      "amount": 100,
      "productCount": 3
    },
    {
      "status": 2,
      "payMethod": 2,
      "amount": 230,
      "productCount": 1
    }
  ]
}
 

order 则为 nested

API查询方式 
直接用.连接对象的属性,如要要查找订单中状态=2的用户,直接使用order.status

GET index_test/type_info/_search
{
  "query": {
    "term": {
      "order.status": 2
    }
  }
}

parent / child 关联的方式

  • 存储结构 
    parent / child 的存储结果跟nested不一样,是存储在不同的type里,通过parent来关联父子type关系,创建有父子关系的两个类型的时候必须在一个请求中创建


PUT index_test { "mappings": { "type_info": { "properties": { "userId": { "type": "integer" }, "mobile": { "type": "keyword" }, "nick": { "type": "keyword" }, "vipType": { "type": "integer" }, "vipPoints": { "type": "integer" }, "regTime": { "type": "date", "format": "yyyy-MM-dd HH:mm:ss" } } }, "type_order": { "_parent": { "type": "type_info" }, "properties": { "amount": { "type": "scaled_float", "scaling_factor": 100 }, "payMethod": { "type": "integer" }, "status": { "type": "integer" }, "productCount": { "type": "integer" } } } } }
 

 

通过 _parent 来指定父type

  • 造点数据 
    添加几条用户数据,和普通的type一样,没有任何区别

PUT index_test/type_info/1000
{
"userId": 1000,
"mobile": "13301020202",
"nick": "梅西",
"vipType": 1,
"vipPoints": 1200,
"regTime": "2018-06-18 12:00:31"
}
PUT index_test/type_info/1001
{
"userId": 1001,
"mobile": "151232223",
"nick": "C罗",
"vipType": 1,
"vipPoints": 300,
"regTime": "2018-05-18 12:00:00"
}
 
PUT index_test/type_info/1002
{
"userId": 1002,
"mobile": "181829282",
"nick": "内马尔",
"vipType": 2,
"vipPoints": 1300,
"regTime": "2018-09-09 12:00:00"
}
 

添加几条订单数据,通过parent来指定type_info, 以下parent=xxx, xxx指的是父类型文档的_id编号。

PUT index_test/type_order/100?parent=1000
{
"userId": 1000,
"amount": 300,
"payMethod": 2,
"status": 3,
"productCount": 2
}
PUT index_test/type_order/101?parent=1000
{
"userId": 1000,
"amount": 250,
"payMethod": 1,
"status": 2,
"productCount": 1
}
PUT index_test/type_order/102?parent=1001
{
"userId": 1001,
"amount": 56,
"payMethod": 1,
"status": 2,
"productCount": 1
}
PUT index_test/type_order/103?parent=1002
{
"userId": 1002,
"amount": 78,
"payMethod": 2,
"status": 1,
"productCount": 2
}
PUT index_test/type_order/104?parent=1002
{
"userId": 1002,
"amount": 50,
"payMethod": 2,
"status": 1,
"productCount": 2
}



如果用java代码在新增doc的时候设置父类型的方法如下:


import com.alibaba.fastjson.JSON;
import org.apache.lucene.search.join.ScoreMode;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.support.WriteRequest;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.transport.InetSocketTransportAddress;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentFactory;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.rest.RestStatus;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.transport.client.PreBuiltTransportClient;

import java.net.InetAddress;
import java.util.HashMap;
import java.util.Map;

public class ElasticSearchMain {

    public static void main(String[] args) throws Exception {
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("localhost"), 9300));

        Map<String, Object> objectMap = new HashMap<>();
        objectMap.put("userId", 1001);
        objectMap.put("amount", 30);
        objectMap.put("payMethod", 2);
        objectMap.put("status", 1);
        objectMap.put("productCount", 2);
        Map<String, Object> objectMap1 = addMapObjectDocToIndex(client, "index_test", "type_order", "105", objectMap);
        System.out.println(JSON.toJSONString(objectMap1));
        client.close();
    }

    public static Map<String, Object> addMapObjectDocToIndex(TransportClient client, String index, String type, String docId, Map<String, Object> params) {
        Map<String, Object> result = new HashMap<String, Object>();
        boolean flag = false;
        XContentBuilder source = null;
        try {
            source = createMapJson(params);
            // 存json入索引中
            IndexResponse response = null;
            if (docId == null) {
                // 使用默认的id
                response = client.prepareIndex(index, type).setRefreshPolicy(WriteRequest.RefreshPolicy.IMMEDIATE).setSource(source).get();
            } else {
                response = client.prepareIndex(index, type, docId).setRefreshPolicy(WriteRequest.RefreshPolicy.IMMEDIATE).setSource(source).setParent("1001").get();
            }
            // 插入结果获取
            RestStatus status = response.status();
            if (status.getStatus() == 200 || status.getStatus() == 201) {
                flag = true;
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
        result.put("success", flag);
        result.put("msg", flag ? "新增成功" : "新增失败");
        return result;
    }

    /**
     * 将Map转换成builder
     *
     * @param mapParam
     * @return
     * @throws Exception
     */
    private static XContentBuilder createMapJson(Map<String, ?> params) throws Exception {
        XContentBuilder source = XContentFactory.jsonBuilder().startObject();
        for (Map.Entry<String, ?> entry : params.entrySet()) {
            if (entry.getValue() != null && entry.getValue().toString().length() > 0) {
                source.field(entry.getKey(), entry.getValue());
            }
        }
        source.endObject();
        return source;
    }
}

 

 
  • API查询方式

  • 通过子type查询父type,返回父type信息 
    查询下单金额大于60的用户,通过 has_child 查询,返回用户信息
GET index_test/type_info/_search
{
"query": {
"has_child": {
  "type": "type_order",
  "query": {
    "range": {
      "amount": {
        "gte": 60
      }
    }
  }
}
}
}
 这个查询出来的结果是梅西和内马尔两个客户:
 
{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 1,
    "hits": [
      {
        "_index": "index_test",
        "_type": "type_info",
        "_id": "1000",
        "_score": 1,
        "_source": {
          "userId": 1000,
          "mobile": "13301020202",
          "nick": "梅西",
          "vipType": 1,
          "vipPoints": 1200,
          "regTime": "2018-06-18 12:00:31"
        }
      },
      {
        "_index": "index_test",
        "_type": "type_info",
        "_id": "1002",
        "_score": 1,
        "_source": {
          "userId": 1002,
          "mobile": "181829282",
          "nick": "内马尔",
          "vipType": 2,
          "vipPoints": 1300,
          "regTime": "2018-09-09 12:00:00"
        }
      }
    ]
  }
}

 

但是以上内马尔其实是有一个订单数量大于60和一个订单数量小于60,但是内马尔也被查出来了,测试结果说明,应该是只要有这样的子类型匹配到了,这个父类型的doc就会出来。

 
java api查询:查询payMethod为2的用户
 
 

import com.alibaba.fastjson.JSON;
import org.apache.lucene.search.join.ScoreMode;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.transport.InetSocketTransportAddress;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.transport.client.PreBuiltTransportClient;

import java.net.InetAddress;

public class ElasticSearchMain {

public static void main(String[] args) throws Exception {
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("localhost"), 9300));
//继续添加其他地址

BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();

boolQuery.must(QueryBuilders.rangeQuery("amount").gte(60));
QueryBuilder hasChildQueryBuilder = QueryBuilders.hasChildQuery("type_order", boolQuery, ScoreMode.Avg);

SearchResponse response = client.prepareSearch("index_test").setTypes("type_info").setQuery(hasChildQueryBuilder)
.setSize(10000).execute().actionGet();

for (SearchHit hit : response.getHits().getHits()) {
System.out.println(JSON.toJSONString(hit.getSource()));
}
//on shutdown
client.close();
}

}
 

 

 
 
 
  • 通过父type查子type,返回子type信息 
    查询vip等级为1的用户下的订单,通过 has_parent 查询,返回订单信息
GET index_test/type_order/_search
{
  "query": {
    "has_parent": {
      "parent_type": "type_info",
      "query": {
        "term": {
          "vipType": {
            "value": 1
          }
        }
      }
    }
  }
}
 

nested 和 parent-child的区别以及使用场景

  • 主要区别: 
    由于存储结构的不同,nested和parent-child的方式有不同的应用场景 
    nested 所有实体存储在同一个文档,parent-child模式,子type和父type存储在不同的文档里。 
    所以查询效率上nested要高于parent-child,但是更新的时候nested模式下,es会删除整个文档再创建,而parent-child只会删除你更新的文档在重新创建,不影响其他文档。所以更新效率上parent-child要高于nested。

  • 使用场景: 
    nested:在少量子文档,并且不会经常改变的情况下使用。 
    比如:订单里面的产品,一个订单不可能会有成千上万个不同的产品,一般不会很多,并且一旦下单后,下单的产品是不可更新的。 
    parent-child:在大量文档,并且会经常发生改变的情况下使用。 
    比如:用户的浏览记录,浏览记录会很大,并且会频繁更新

posted @ 2019-07-29 00:24  护花使者  Views(757)  Comments(0Edit  收藏  举报