该文被密码保护。 阅读全文
该文被密码保护。 阅读全文
该文被密码保护。 阅读全文
摘要:
LFM--梯度下降法--实现基于模型的协同过滤0.引入依赖1.数据准备2.算法的实现3.测试 LFM--梯度下降法--实现基于模型的协同过滤 0.引入依赖 import numpy as np # 数值计算、矩阵运算、向量运算import pandas as pd # 数值分析、科学计算 1.数据准 阅读全文
摘要:
TF-IDF算法代码示例0.引入依赖1.定义数据和预处理2.进行词数统计3.计算词频 TF4.计算逆文档频率 IDF5.计算 TF-IDF TF-IDF算法代码示例 0.引入依赖 import numpy as np # 数值计算、矩阵运算、向量运算import pandas as pd # 数值分 阅读全文
摘要:
无监督学习--聚类模型--K 均值0.引入依赖1.数据的加载和预处理2.算法实现3.测试 无监督学习--聚类模型--K 均值 0.引入依赖 import numpy as npimport matplotlib.pyplot as plt# 这里直接 sklearn 里的数据集from sklear 阅读全文
摘要:
有监督学习--分类模型--K 近邻(kNN)0.引入依赖1.数据的加载和预处理2.核心算法实现3.测试4.自动化测试 有监督学习--分类模型--K 近邻(kNN) 0.引入依赖 import numpy as np # 数值计算、矩阵运算、向量运算import pandas as pd # 数值分析 阅读全文
摘要:
有监督学习--简单线性回归模型(调用 sklearn 库代码实现)0.引入依赖1.导入数据(data.csv)2.定义损失函数3.导入机器学习库 sklearn4.测试:运行算法,从训练好的模型中提取出系数和截距5.画出拟合曲线6.附录-测试数据 有监督学习--简单线性回归模型(调用 sklearn 阅读全文