1.0 前言
本地搭建stable-diffusion diffuser docker CUDA10.2 RTX2060
上次安裝的cuda10.2太舊了,升級cuda11.7順便填一下漏了的點。
2.0 卸載
1 2 3 4 5 6 | sudo apt-get remove --purge '^nvidia-.*' sudo apt-get remove --purge '^libnvidia-.*' sudo apt-get remove --purge '^cuda-.*' sudo apt-get remove --purge '^cudnn-.*' sudo apt-get remove --purge '^libcudnn7-.*' sudo apt-get remove --purge '^libcudnn7*' |
卸載
2.1 檢查
1 2 3 | dpkg -l | grep nvidia dpkg -l | grep cuda dpkg -l | grep cudnn |
檢查是否已成功卸載
3.0 CUDA
https://developer.nvidia.com/cuda-10.2-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=deblocal
1 2 3 4 5 6 7 | wget https: //developer .download.nvidia.com /compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804 .pin sudo mv cuda-ubuntu1804.pin /etc/apt/preferences .d /cuda-repository-pin-600 wget https: //developer .download.nvidia.com /compute/cuda/11 .7.0 /local_installers/cuda-repo-ubuntu1804-11-7-local_11 .7.0-515.43.04-1_amd64.deb sudo dpkg -i cuda-repo-ubuntu1804-11-7-local_11.7.0-515.43.04-1_amd64.deb sudo cp /var/cuda-repo-ubuntu1804-11-7-local/cuda- *-keyring.gpg /usr/share/keyrings/ sudo apt-get update sudo apt-get -y install cuda |
安裝CUDA
3.1 rmmod & lsof cuda
https://comzyh.com/blog/archives/967/
1 2 3 4 | sudo rmmod nvidia_drm sudo rmmod nvidia_modeset sudo rmmod nvidia_uvm sudo rmmod nvidia |
重新restart服務器,或手動rmmod kernel mod
1 | sudo lsof /dev/nvidia * |
重新加載cuda
3.2 vncc
1 2 | export PATH= /usr/local/cuda-11 .7 /bin ${PATH:+:${PATH}} export LD_LIBRARY_PATH= /usr/local/cuda/lib64 ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} |
vncc動態鏈
3.4 檢查
1 | nvidia-smi |
4.0 cudnn
1 2 3 4 5 6 | sudo dpkg -i cudnn- local -repo-ubuntu1804-8.9.0.131_1.0-1_amd64.deb sudo cp /var/cudnn-local-repo- * /cudnn-local- *-keyring.gpg /usr/share/keyrings/ sudo apt-get update sudo apt-get install libcudnn8=8.9.0.131-1+cuda11.8 sudo apt-get install libcudnn8-dev=8.9.0.131-1+cuda11.8 sudo apt-get install libcudnn8-samples=8.9.0.131-1+cuda11.8 |
安裝cudnn
1 2 3 4 | $ cp -r /usr/src/cudnn_samples_v8/ $HOME cd ~ /cudnn_samples_v8/mnistCUDNN make clean && make . /mnistCUDNN |
測試cudnn
4.1 檢查
5.0 安裝libnvidia-container
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#setting-up-nvidia-container-toolkit
1 2 3 4 5 6 7 8 9 | distribution=$(. /etc/os-release ; echo $ID$VERSION_ID) \ && curl -fsSL https: //nvidia .github.io /libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring .gpg \ && curl -s -L https: //nvidia .github.io /libnvidia-container/experimental/ $distribution /libnvidia-container .list | \ sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \ sudo tee /etc/apt/sources .list.d /nvidia-container-toolkit .list sudo apt-get update sudo apt-get install -y nvidia-container-toolkit sudo nvidia-ctk runtime configure --runtime=docker sudo systemctl restart docker |
安裝libnvidia-container
6.0 docker部署
1 2 | sudo docker build -t diffusers /cuda/v4 :11.7-cudnn8-runtime-ubuntu18.04 . sudo docker run -- rm --runtime=nvidia --gpus all diffusers /cuda/v5 :11.7-cudnn8-runtime-ubuntu18.04 nvidia-smi |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具