集成学习-Majority Voting

认识

集成学习(Ensemble Methods), 首先是一种思想, 而非某种模型, 是一种 "群体决策" 的思想, 即对某一特定问题, 用多个模型来进行训练.

像常见的单个模型, KNN, LR, 逻辑回归, 贝叶斯, SVM, 决策树, LDA, PCA ... 这些都是单个模型来训练可能并不能很直观说哪个最好, 但有种直觉, 多个模型来来整, 肯定由于单个模型, 这就是集成学习的思想.

如何 "管理" 多个模型?

  • bagging:
  • boosting:

主流集成学习方法

  • Majority Voting
  • Bagging
  • Random Forests
  • Stacking

Majority Voting

嗯, 我就翻译为, "民主决策"吧.

以分类问题为例, 就是将样本 X , 训练出不同的模型, 然后进行测试, 进行投票, 得票最多的模型则 被被认为是最好.

输入: X

训练: m1 = knn_tarin(X), m2 = svm(X), m3=kernel_svm(X), m4 = LDA(X)....

输出: m1, m2, m3...mn

....

测试:

输入: 各每个模型 输入测试数据 X_test

输出: m1(X_test), m2(X_test)....

然后投票voting 取众数 mode 即可:

y=mode(m1(Xtest),m2(Xtest)...)

证明voting 是可行的

假设有 n 个独立的分类模型, 每一个的错误率都为 ϵ. (独立就意味着误差是不相关的).

然后假设这里是一个二元分类场景, 而每个模型, 又非常地烂, 也不针对谁, 都是一些, 错误率比随机猜要好一点点.

ϵiϵ1,ϵ2,...ϵn, ϵi<0.5

即模型错误率低于 0.5. 于是可以计算一波概率, 假设有n个模型, 其中对于 k 个模型,都是错误的概率(最终错误的概率):

P(k)=(nk)ϵk(1ϵ)nk k>0.5n

最终错误率:

ϵ=kn(nk)ϵk(1ϵ)nk

栗子: 假设一共有 11 个模型, 每个模型的误差是 0.25 , 则误差为:

ϵ=k=611(nk)0.25k(10.25)11k=0.034

这样就比较直观看出, 多个模型肯定是由于单个模型的哦.

soft voting

针对模型, 可以输出一个 分类标签出现的 概率值, 比如像 逻辑回归. 输出不仅仅是最终分类, 还会输出其概率有多大.

y^=argmaxji=1nwiPi,j

Pi,j 表示第 i 个分类模型, 输出类别为 i 的概率

wi 表示第 i 个分类模型的权重, 如都一样则: wi=1n

其实就是给类别, "附加上了该结果 出现的预测概率当然,也可以给不同模型的权重值.

case

假设样本是 X, 问题是二分类 (0, 1), 然后有训练好3个模型 m1,m2,m3, 这三个模型, 我假设再给一个主观经验的权重, 比如 分别是 0.2, 0.4, 0.6

现用测试集测试, 3个模型分别得到输出如下:

m1(X)=[0.9,0.1]m2(X)=[0.8,0.2]m3(X)=[0.4,0.6]

则:

P(y=1|X)=0.20.9+0.20.8+0.60.4=0.58

P(y=0|X)=0.20.1+0.20.2+0.60.6=0.42

关于投票, 还是很好理解的吧.

posted @   致于数据科学家的小陈  阅读(3444)  评论(0编辑  收藏  举报
编辑推荐:
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
点击右上角即可分享
微信分享提示

目录导航