pySpark RDD基本用法

pySpark RDD基本用法

RDD的全称是:Resilient Distributed Dataset (弹性分布式数据集),它有几个关键的特性:

RDD是只读的,表示它的不可变性。
可以并行的操作分区集合上的所有元素。

每个RDD的内部,有5个主要特性:

  • A list of partitions (一个分区列表,可以获取所有的数据分区)
  • A function for computing each split(对给定的分区内的数据进行计算的function)
  • A list of dependencies on other RDDs (一个RDD所依赖的父RDD列表)
  • Optionally, a Partitioner for key-value RDDs (可选:如何进行K-V的RDD分区)
  • Optionally, a list of preferred locations to compute each split on(可选:数据做运算时最优的地址,即数据本地性)

1.RDD的三种基本运算

  • Transformation(转换)
    概念:
    将一个RDD通过一系列操作变为另一个RDD的过程,这个操作可能是简单的加减操作,也可能是某个函数或某一系列函数。

注:所有Transformation函数都是Lazy(惰性的),不会立即执行,需要Action函数来触发
Transformation操作不会触发真正的计算,只会建立RDD的关系图

  • Action(动作)

    概念:
    Action操作代表依次计算的结束,返回值不是RDD,将结果返回到Driver程序或输出到外部(文件或文件夹)。

注:所有Action函数立即执行(Eager),比如reduce、saveAsTextFile、count等。

所以Transformation只是建立计算关系,Action才是实际的执行者。
每个Action操作都会形成一个DAG调用SparkCoutext的runJob方法向集群提交请求,所以每个Action操作都对应一个DAG/Job。

  • Persisitence(持久化)

    概念:
    Persisitence操作对于那些会重复使用的 RDD,可以将RDD"持久化"在内存中以供后续使用,以提高执行性能。

注:持久化算子有三种,cache,persist,checkpoint,以上算子都可以将RDD持久化,持久化的单位是partition。cache和persist都是懒执行的。必须有一个action类算子触发执行。checkpoint算子不仅能将RDD持久化到磁盘,还能切断RDD之间的依赖关系。

2 常用算子使用实例

python中将数据抽象成4大数据结构,分别是tuple,list,dict,set。再粗分下,又可以分成list和k-v两种数据结构。针对这两种数据机构,spark中都有相应的算子。

初始化pyspark代码:

  import time
  import argparse

  from pyspark import SparkContext, SparkConf
  from pyspark.sql.dataframe import DataFrame
  from pyspark.sql.session import SparkSession
  import json

  from pyspark.sql import HiveContext
  from pyspark.sql import SQLContext


  sparkconf = SparkConf().setAppName("Python Spark2").set("spark.ui.showConsoleProgress", "false")\
                    .set("spark.serializer","org.apache.spark.serializer.KryoSerializer")\
                    .set("hive.exec.dynamici.partition",True)\
                    .set("hive.exec.dynamic.partition.mode","nonstrict")

  spark = SparkSession.builder.config(conf=sparkconf).enableHiveSupport().getOrCreate()
  sc = spark.sparkContext

2.1基本RDD运算

2.1.1初始函数

使用parallelize函数初始化一个rdd:

  intRDD = sc.parallelize([1,2,3,4,5,6])
  intRDD.collect()
  :[1, 2, 3, 4, 5, 6]

parallelize,本意是平行化的意思,使数据生成于各个计算节点,用于并行计算的意思。还可以使用直接读txt文件的方式来:

  rdd = sc.textFile(file,3)

2.1.2 map函数

再使用map函数,对各个节点做相应的运算。map函数可以遍历所有的节点,生成另外一个RDD。

  intRDD.map(lambda x:x+1).collect()
  :[2, 3, 4, 5, 6, 7]

2.1.3 filter函数

filter函数可以对RDD内的元素进行筛选,并产生新的RDD。

  intRDD.filter(lambda x:x>4).collect()
  :[5, 6]

2.1.4 distinct函数

distinct函数对RDD内的元素进行去重复操作。并不产生新的RDD。

  intRDD = sc.parallelize([1,2,3,4,5,6,6])
  intRDD.distinct().collect()
  :[1, 2, 3, 4, 5, 6]

2.1.5 groupby运算

groupby运算可以通过匿名函数将数据分为多个List。

  intRDD = sc.parallelize([1,2,3,4,5,6,6])
  gRDD = intRDD.groupBy(lambda x: "big" if(x>4) else "small").collect()
  print(gRDD)
  :[('big', <pyspark.resultiterable.ResultIterable object at 0x7f1970214640>), ('small', <pyspark.resultiterable.ResultIterable object at 0x7f1951f15ee0>)]
  print(list(gRDD[0][1]))
  :[5, 6, 6]

2.2 多个RDD"转换"运算

RDD支持求并集,交集,差集和笛卡尔积运算。

  intRDD1 = sc.parallelize([1,2])
  intRDD2 = sc.parallelize([3,4,5])
  intRDD3 = sc.parallelize([5,6,6])
  intRDD4 = intRDD1.union(intRDD2).union(intRDD3).collect() #并集
  print(intRDD4)
  :[1, 2, 3, 4, 5, 5, 6, 6]


  intRDD5 = intRDD2.intersection(intRDD3).collect()#交集
  print(intRDD5)
  :[5]

  intRDD6 = intRDD2.subtract(intRDD3).collect()#差集
  print(intRDD6)
  :[3, 4]

  intRDD7 = intRDD1.cartesian(intRDD3).collect()#笛卡尔积
  print(intRDD7)
  :[(1, 5), (1, 6), (1, 6), (2, 5), (2, 6), (2, 6)]

2.3 基本的action运算

2.3.1 读取运算

  intRDD = sc.parallelize([1,2,3,4,5,6,6])
  print(intRDD.take(1))
  print(intRDD.first())
  print(intRDD.takeOrdered(3))
  print(intRDD.takeOrdered(3,lambda x:-x))

  :[1]
  :1
  :[1, 2, 3]
  :[6, 6, 5]

2.3.2 统计功能

  print(intRDD.stats())
  :(count: 7, mean: 3.857142857142857, stdev: 1.8070158058105026, max: 6.0, min: 1.0)

2.4基本K-V RDD运算

Spark RDD 支持键值(K-V)运算,K-V运算也是Map/Reduce的基础。

2.4.1 同样的初始化方法

  intRDD = sc.parallelize([(1,2),(3,2),(4,5)])
  intRDD.collect()
  :[(1,2),(3,2),(4,5)]

2.4.2 filter函数

filter算子的入参是tuple,可以用x[0]和x[1]区分两个值。

  intRDD = sc.parallelize([(1,2),(3,2),(4,5)])
  intRDD.filter(lambda x:x[0] > 3).collect()
  :[(4, 5)]

2.4.3 mapValues函数

需要注意的是mapValues的入参是value,返回值也是value。

  intRDD = sc.parallelize([(1,2),(3,2),(4,5)])
  intRDD.mapValues(lambda x:x+1).collect()
  :[(1, 3), (3, 3), (4, 6)]

2.4.4 sortByKey函数

通过key值来做排序

  intRDD = sc.parallelize([(1,2),(3,2),(4,5)])
  intRDD.sortByKey().collect()
  intRDD.sortByKey(ascending = False).collect()

  :[(1, 3), (3, 3), (4, 6)]
  :[(4, 5), (3, 2), (1, 2)]

2.4.5 reduceByKey函数

通过key来归纳数据

  intRDD = sc.parallelize([(1,2),(3,2),(4,5),(1,6)])
  intRDD.reduceByKey(lambda x,y:x+y)
  intRDD.collect()
  :[(1,8),(3,2),(4,5)]

2.5 多个 K-V RDD运算

2.5.1 join运算

创建两个RDD通过join做运算拼接

  intRDD1 = sc.parallelize([(1,2),(3,2),(4,5),(1,6)])
  intRDD2 = sc.parallelize([(1,2)])
  intRDD1.join(intRDD2).collect()
  :[(1, (2, 2)), (1, (6, 2))]

默认的join运算是通过intRDD1.key=intRDD2.key做运算的,生成一个新的RDD,key值不变,value值为tuple类型,做值得聚合。

2.5.2 leftOuterJoin运算

创建两个RDD通过leftOuterJoin做运算拼接

  intRDD1 = sc.parallelize([(1,2),(3,2),(4,5),(1,6)])
  intRDD2 = sc.parallelize([(1,2)])
  intRDD1.leftOuterJoin(intRDD2).collect()
  :[(1, (2, 2)), (1, (6, 2)), (3, (2, None)), (4, (5, None))]

leftOuterJoin运算是通过intRDD1的key做left join运算的,生成一个新的RDD,key值为intRDD1的key,value值为tuple类型,做值的聚合。

2.5.3 rightOuterJoin运算

创建两个RDD通过rightOuterJoin做运算拼接

  intRDD1 = sc.parallelize([(1,2),(3,2),(4,5),(1,6)])
  intRDD2 = sc.parallelize([(1,2)])
  intRDD1.rightOuterJoin(intRDD2).collect()
  [(1, (2, 2)), (1, (6, 2))]

rightOuterJoin运算是通过intRDD2的key做right join运算的,生成一个新的RDD,key值为intRDD2的key,value值为tuple类型,做值的聚合。

2.5.4 subtractByKey运算

subtractByKey会清理掉key相同的值:

  intRDD1 = sc.parallelize([(1,2),(3,2),(4,5),(1,6)])
  intRDD2 = sc.parallelize([(1,9)])
  intRDD1.subtractByKey(intRDD2).collect()
  :[(3, 2), (4, 5)]

2.6 K-V 的 action 运算

K-V 的RDD同样支持first等运算,但是也支持一些只有K-V情况下的值。

2.6.1 collectAsMap 运算

可以将输出的值转换成map,但是需要注意的是会将key重复的值抹掉。

  intRDD1 = sc.parallelize([(1,2),(3,2),(4,5),(1,6)])
  print(intRDD1.collectAsMap())
  :{1: 6, 3: 2, 4: 5}

2.6.2 lookup 运算

通过key值查找对应的value值:

  intRDD1 = sc.parallelize([(1,2),(3,2),(4,5),(1,6)])
  print(intRDD1.lookup(1))
  :[2, 6]

2.7 RDD持久化

如果我们相对一个RDD进行复用操作的时候,基于RDD的特性,当以rdd通过transformation转化为另外一个rdd的时候,前面的rdd就会被自动释放,此时还想在原来的rdd身上进行其它操作,需要从源头进行数据计算,这样效率自然会降低。为了能够在rdd重用的时候,直接从内存中加载相关数据,所以我们需要缓存算子(persist/cache)将rdd数据持久化到内存等等其它地方。

  • MEMORY_ONLY RDD中所有的数据都会以未经序列化的java对象的格式优先存储在内存中,如果内存不够,剩下的数据不会进行持久化。很容易出OOM=OutOfMemoryException异常。java的gc频率和对象个数成正比。gc的时候会stop-the-world。

  • MEMORY_ONLY_SER 和MEMORY_ONLY的操作几乎一致,唯一的区别是在内存中存储的不在是未经序列化的java对象,是序列化之后的数据,rdd经过序列化之后,每一个partition就只有一个字节数组,也就是说一个partition就是一个java对象。

  • MEMORY_AND_DISK 和MEMORY_ONLY的唯一区别在于,MEMORY_ONLY不会持久化哪些在内存中持久化的数据,MEMORY_AND_DISK会将哪些在内存中保存不下的数据保存到磁盘中。

  • MEMORY_AND_DISK_SER 就比MEMORY_AND_DISK多了一点,存储的是序列化的java对象

  • DISK_ONLY 磁盘存储,效率太低,一般不用XXXXX_2(MEMORY_ONLY_2等等) 是在上述所有操作的基础之上进行了一个备份。从安全、高可用的角度上考虑,如果备份所消耗的时间,比数据丢失之后从源头重新计算一遍的代价小,我们才考虑使用Xxxx_2。

  • OFF_HEAP 非堆。上述所有的操作都会使用Spark自身的内存资源,所以为了给计算提供足够的资源,可以将持久化的数据保存到非executor中。常见的OFF_HEAP:Tachyon/Alluxio

    from pyspark import StorageLevel
    intRDD1.persist(storageLevel=StorageLevel.MEMORY_ONLY)
    intRDD1.unpersist()
    
posted @ 2022-08-26 14:43  身带吴钩  阅读(679)  评论(0编辑  收藏  举报