The sum of the squares of the first ten natural numbers is,
12 + 22 + ... + 102 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
(a+b+c)^2-(a^2+b^2+c^2)=a^2+b^2+c^2+2ab+2ac+2bc-a^2-b^2-c^2 =2(ab+ab+bc)
结论:任意2个不同数向乘的累加和的2倍。
static void Main(string[] args) { long startTime, endTime; Int64 f=0; int i,j; startTime = DateTime.Now.Ticks; for (i = 1; i <= 99; i++) { for (j = i + 1; j <= 100; j++) { f += i * j; } } endTime = DateTime.Now.Ticks; Console.WriteLine("result:{0} run time:{1} ms",2*f,(endTime-startTime)/10000.0); Console.ReadLine(); }
结果:25164150