3维计算几何模板
#include <iostream> #include <cmath> #include <stdio.h> #include <vector> #include <string.h> #include <stdlib.h> #include <algorithm> using namespace std; #define MAX_N 110 /*------------------常量区-------------------*/ const double INF = 1e10; // 无穷大 const double EPS = 1e-5; // 计算精度 const double PI = acos(-1.0);// PI const int PINXING = 0; // 平行 const int XIANGJIAO = 1; // 相交 const int XIANGLI = 0; // 相离 const int GONGXIAN = 2; // 共线 const int CHONGDIE = -1; // 重叠 const int INSIDE = 1; // 点在图形内部 const int OUTSIDE = 0; // 点在图形外部 const int BORDER = 2; // 点在图形边界 /*-----------------类型定义区----------------*/ struct Point { // 二维点或矢量 double x, y; //double angle, dis; Point() {} Point(double x0, double y0): x(x0), y(y0) {} void read() { scanf("%lf%lf",&x,&y); } }; struct Line { // 二维的直线或线段 Point p1, p2; Line() {} Line(Point p10, Point p20): p1(p10), p2(p20) {} void read() { scanf("%lf%lf%lf%lf",&p1.x,&p1.y,&p2.x,&p2.y); } }; struct Rect { // 用长宽表示矩形的方法 w, h分别表示宽度和高度 double w, h; Rect() {} Rect(double _w,double _h) : w(_w),h(_h) {} }; struct Rect_2 { // 表示矩形,左下角坐标是(xl, yl),右上角坐标是(xh, yh) double xl, yl, xh, yh; Rect_2() {} Rect_2(double _xl,double _yl,double _xh,double _yh) : xl(_xl),yl(_yl),xh(_xh),yh(_yh) {} }; struct Circle { //圆 Point c; double r; Circle() {} Circle(Point _c,double _r) :c(_c),r(_r) {} }; typedef vector<Point> Polygon; // 二维多边形 typedef vector<Point> Points; // 二维点集 /*-------------------基本函数区---------------------*/ inline double max(double x,double y) { return x > y ? x : y; } inline double min(double x, double y) { return x > y ? y : x; } inline bool ZERO(double x) // x == 0 { return (fabs(x) < EPS); } inline bool ZERO(Point p) // p == 0 { return (ZERO(p.x) && ZERO(p.y)); } inline bool EQ(double x, double y) // eqaul, x == y { return (fabs(x - y) < EPS); } inline bool NEQ(double x, double y) // not equal, x != y { return (fabs(x - y) >= EPS); } inline bool LT(double x, double y) // less than, x < y { return ( NEQ(x, y) && (x < y) ); } inline bool GT(double x, double y) // greater than, x > y { return ( NEQ(x, y) && (x > y) ); } inline bool LEQ(double x, double y) // less equal, x <= y { return ( EQ(x, y) || (x < y) ); } inline bool GEQ(double x, double y) // greater equal, x >= y { return ( EQ(x, y) || (x > y) ); } // 输出浮点数前,防止输出-0.00调用该函数进行修正! inline double FIX(double x) { return (fabs(x) < EPS) ? 0 : x; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ //-------------------3D 区域----------------------------// struct Point3D { //三维点或矢量 double x, y, z; Point3D() {} Point3D(double x0, double y0, double z0): x(x0), y(y0), z(z0) {} void read() { scanf("%lf%lf%lf",&x,&y,&z); } }; struct Line3D { // 三维的直线或线段 Point3D p1, p2; Line3D() {} Line3D(Point3D p10, Point3D p20): p1(p10), p2(p20) {} void read() { scanf("%lf%lf%lf%lf%lf%lf",&p1.x,&p1.y,&p1.z,&p2.x,&p2.y,&p2.z); } }; struct Area3D{ Point3D p1,p2,p3; Area3D(){} Area3D(Point3D p10, Point3D p20,Point3D p30): p1(p10), p2(p20), p3(p30){} void read() { p1.read(); p2.read(); p3.read(); //scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf",&p1.x,&p1.y,&p1.z,&p2.x,&p2.y,&p2.z,&p3.x,&p3.y,&p3.z); } }; inline bool ZERO(Point3D p) // p == 0 { return (ZERO(p.x) && ZERO(p.y) && ZERO(p.z)); } ////////////////////////////////////////////////////////////////////////////////////// //三维矢量运算 bool operator==(Point3D p1, Point3D p2) { return ( EQ(p1.x, p2.x) && EQ(p1.y, p2.y) && EQ(p1.z, p2.z) ); } bool operator<(Point3D p1, Point3D p2) { if (NEQ(p1.x, p2.x)) { return (p1.x < p2.x); } else if (NEQ(p1.y, p2.y)) { return (p1.y < p2.y); } else { return (p1.z < p2.z); } } Point3D operator+(Point3D p1, Point3D p2) { return Point3D(p1.x + p2.x, p1.y + p2.y, p1.z + p2.z); } Point3D operator-(Point3D p1, Point3D p2) { return Point3D(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z); } Point3D operator * (const Point3D& A, double p) { return Point3D(A.x*p, A.y*p, A.z*p); } Point3D operator / (const Point3D& A, double p) { return Point3D(A.x/p, A.y/p, A.z/p); } Point3D operator*(Point3D p1, Point3D p2) // 计算叉乘 p1 x p2 { return Point3D(p1.y * p2.z - p1.z * p2.y, p1.z * p2.x - p1.x * p2.z, p1.x * p2.y - p1.y * p2.x ); } double operator&(Point3D p1, Point3D p2) { // 计算点积 p1·p2 return (p1.x * p2.x + p1.y * p2.y + p1.z * p2.z); } double Norm(Point3D p) // 计算矢量p的模 { return sqrt(p.x * p.x + p.y * p.y + p.z * p.z); } //取平面法向量 Point3D GetV(Area3D s){ return (s.p1-s.p2)*(s.p2-s.p3); } //判三点共线 int PointOnLine(Point3D p1,Point3D p2,Point3D p3){ return ZERO( (p1-p2)*(p2-p3) ); } //判四点共面 int PointOnArea(Point3D a,Point3D b,Point3D c,Point3D d){ return ZERO( GetV(Area3D(a, b, c))&(d-a) ); } //求三维空间中两点间的距离 double Dis(Point3D p1, Point3D p2) { return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z)); } // 求三维空间中点到直线的距离 double Dis(Point3D p, Line3D L) { if(L.p1==L.p2) return Dis(p, L.p1); return Norm((p - L.p1) * (L.p2 - L.p1)) / Norm(L.p2 - L.p1); } bool OnLine(Point3D p, Line3D L) // 判断三维空间中点p是否在直线L上 { if(L.p1==L.p2 && p==L.p1) return true;//共点时,返回true return ZERO( (p - L.p1) * (L.p2 - L.p1) ); } bool OnLineSeg(Point3D p, Line3D L) // 判断三维空间中点p是否在线段l上 { return ( ZERO((L.p1 - p) * (L.p2 - p)) && EQ( Norm(p - L.p1) + Norm(p - L.p2), Norm(L.p2 - L.p1)) ); } // 点p到平面Ap-Al的距离。 double Dis(Point3D p, Point3D Ap, Point3D Al) { return fabs((p-Ap)&Al)/Norm(Al); // 如果不取绝对值,得到的是有向距离 } // 点p在平面Ap-Al上的投影。 Point3D PointToArea(Point3D p,Point3D Ap, Point3D Al) { Al=Al/(Norm(Al));//把Al变成法向量。 return p-Al*((p-Ap)&Al); } //得到点p到直线L的距离,并返回p到直直线L的最近点rep double PointToLine(Point3D p,Line3D L,Point3D& rep) { if(L.p1==L.p2) { rep=L.p1; return Dis(p,L.p1); } Point3D a,b; a = L.p2-L.p1; b = p-L.p1; double dis12 = Dis(L.p1,L.p2); double dis = ( Norm(a*b) )/dis12; double k = (a&b)/(Norm(a)*dis12) ; rep = L.p1+(L.p2-L.p1)*k; return dis; } //求两条直线之间的关系(三维) //输入:两条不为点的直线 //输出:相交返回XIANGJIAO和交点p,平行返回PINGXING,共线返回GONGXIAN int LineAndLine(Line3D L1,Line3D L2,Point3D &p) { Point3D px,py; px = L1.p1 - L1.p2; py = L2.p1 - L2.p2; if( ZERO(px*py) )//平行或者共线 { if( ZERO( (L2.p1-L1.p1)*py ) ) //共线 { return GONGXIAN; } return PINXING; } //判断是否共面 Point3D tp=(L1.p1-L2.p1)*py; if( !ZERO(tp&px) ) return XIANGLI;//XIANGLI与平行相同 p = L1.p1; Point3D tp1=(L2.p1-L1.p1)*(L2.p1-L2.p2); Point3D tp2=(L1.p2-L1.p1)*(L2.p1-L2.p2); double _t = Norm(tp1)/Norm(tp2); //tp1和tp2肯定是共线的,如果反向则_t 为负 if( LT( (tp1&tp2),0 ) ) _t*=-1; p.x += (L1.p2.x-L1.p1.x)*_t; p.y += (L1.p2.y-L1.p1.y)*_t; p.z += (L1.p2.z-L1.p1.z)*_t; return XIANGJIAO; } //空间两直线最近点对。直线不能平行,直线不能为点. //ans1为直线a1,b1上的最近点 Point3D ans1,ans2; double SegSegDistance(Point3D a1, Point3D b1, Point3D a2, Point3D b2) { Point3D v1 = (a1-b1), v2 = (a2-b2); Point3D N = v1*v2; Point3D ab = (a1-a2); double ans = (N&ab) / Norm(N); Point3D p1 = a1, p2 = a2; Point3D d1 = b1-a1, d2 = b2-a2; double t1, t2; t1 = ((p2-p1)*d2 )&(d1*d2); t2 = ((p2-p1)*d1 )&(d1*d2); double dd = Norm( (d1*d2) ); t1 /= dd*dd; t2 /= dd*dd; ans1=a1+(b1-a1)*t1; ans2=a2+(b2-a2)*t2; return fabs(ans); } //直线与平面交 int LineAndArea(Line3D l1,Point3D Ap,Point3D Al,Point3D &p) { //输入直线,和平面的点法式 //第一步,判断直线与平面是否平行。 if( ZERO((l1.p2-l1.p1)&Al) ) return 0;//直线与平面平行。 double _t =( (Ap-l1.p1)&Al ) / ((l1.p1-l1.p2)&Al); p = l1.p1+(l1.p1-l1.p2)*_t; return 1; } void dfs(int x,double &len) { len++; dfs(x-1,len); dfs(x-2,len); } //空间两直线最近点对 //注意:直线不能平行 double LineAndLine(Line3D l1,Line3D l2,Point3D &p1,Point3D &p2) { //先求出法向量 Point3D v1,v2; v1 = l1.p2-l1.p1; v2 = l2.p2-l2.p1; Point3D vt=v1*v2; //然后先把l2投影到 l1所在的平面上 double len = ((l2.p1-l1.p1)&vt)/Norm(vt); double normvt = -len/Norm(vt); vt.x = vt.x*normvt; vt.y = vt.y*normvt; vt.z = vt.z*normvt; Line3D tl2; tl2.p1 = l2.p1+vt; tl2.p2 = l2.p2+vt; int sign=LineAndLine(l1, tl2, p1); /* //测试用 if(sign!=XIANGJIAO) { int x=0; printf("%lf\n",len/x); dfs(100000000,len); } */ return fabs(len); } //已知空间四面体6条边,求体积 double P( double a,double b,double c,double d,double e ){ return a*(b*c-d*e); } double Get4V(int OA,int OB,int OC,int AB,int CA,int BC) { OA*=OA;OB*=OB;OC*=OC;AB*=AB;CA*=CA;BC*=BC; double ans=0; ans+=P( OA,OB,OC,(OB+OC-BC)/2.0,(OB+OC-BC)/2.0 ); ans-=P( (OA+OB-AB)/2.0,(OA+OB-AB)/2.0,OC,(OA+OC-CA)/2.0,(OB+OC-BC)/2.0 ); ans+=P( (OA+OC-CA)/2.0,(OA+OB-AB)/2.0,(OB+OC-BC)/2.0,OB,(OA+OC-CA)/2.0); return sqrt(ans/36); } //求两面相交,平行或共面返回PINGXING,否则返回XIANGJIAO和直线rel int AreaAndArea(Area3D a1,Area3D a2,Line3D &rel) { Point3D va1 = GetV(a1),va2 = GetV(a2); Point3D lv = va1*va2;//相交直线的方向向量 if( ZERO(lv) )//平行 { return PINXING; } //然后得到某一个交点 Point3D p1; if(LineAndArea(Line3D(a1.p1,a1.p2), a2.p1, va2, p1) == 0) if(LineAndArea(Line3D(a1.p1,a1.p3), a2.p1, va2, p1) == 0) LineAndArea(Line3D(a1.p2,a1.p3), a2.p1, va2, p1); rel.p1 = p1; rel.p2 = p1 + (lv*10); return XIANGJIAO; } //已知3点坐标,求平面ax+by+cz+d=0; void GetAreaABCD(Point3D p1,Point3D p2,Point3D p3,double &a,double &b,double &c,double &d) { a = ( (p2.y-p1.y)*(p3.z-p1.z)-(p2.z-p1.z)*(p3.y-p1.y) ); b = ( (p2.z-p1.z)*(p3.x-p1.x)-(p2.x-p1.x)*(p3.z-p1.z) ); c = ( (p2.x-p1.x)*(p3.y-p1.y)-(p2.y-p1.y)*(p3.x-p1.x) ); d = ( 0-(a*p1.x+b*p1.y+c*p1.z) ); } ////////////////////////////////////////////////////////////////////////////////////// /*---------------------代码区---------------------------*/