hdu 2586 (LCA)
最近公共祖先。。 表示卡在一个位置卡了很久。。思维还是差了些,在一颗树上记录距离只需记录到根结点的距离,如果要求两个点的距离(一个点时另一个点的祖先)只需将他们到根结点的距离相减就行了.
唉,其他的就是普通的LCA (离线)。
等下去学有限的LCA
How far away ?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2412 Accepted Submission(s): 893
Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
Input
First line is a single integer T(T<=10), indicating the number of test cases.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3
2 2
1 2 100
1 2
2 1
Sample Output
10
25
100
100
Source
Recommend
lcy
#include <stdio.h> #include <string.h> #include <algorithm> #include <iostream> using namespace std; #define N 40040 int n,m; struct node { int to; int next; int w; }edge[N*100]; struct node1 { int id,from,to,next; }edge1[2200]; int cnt,pre[N]; int cnt1,pre1[N]; int mark[N]; int bin[N],bw[N]; // 用bw 来记录 int save[N]; void add_edge(int u,int v,int w) { edge[cnt].to=v; edge[cnt].w=w; edge[cnt].next=pre[u]; pre[u]=cnt++; } void add_edge1(int u,int v,int id) { edge1[cnt1].id=id; edge1[cnt1].from=u; edge1[cnt1].to=v; edge1[cnt1].next=pre1[u]; pre1[u]=cnt1++; } int find(int v) { if(bin[v]==v) return v; return bin[v]=find(bin[v]); } void dfs(int s,int w) { mark[s]=1; bw[s]=w; for(int p=pre[s];p!=-1;p=edge[p].next) { int v=edge[p].to; if(mark[v]==0) { dfs(v,w+edge[p].w); bin[v]=s; } } for(int p=pre1[s];p!=-1;p=edge1[p].next) { int v=edge1[p].to; if(mark[v]==1) // 如果另一点已经查找过 { if(save[edge1[p].id]==-1) { int x=find(v); save[edge1[p].id] = bw[v]-bw[x]+bw[s]-bw[x]; } } } } int main() { int t; scanf("%d",&t); while(t--) { cnt=0; memset(pre,-1,sizeof(pre)); cnt1=0; memset(pre1,-1,sizeof(pre1)); scanf("%d%d",&n,&m); for(int i=1;i<n;i++) { int x,y,key; scanf("%d%d%d",&x,&y,&key); add_edge(x,y,key); add_edge(y,x,key); } for(int i=0;i<m;i++) { int x,y; scanf("%d%d",&x,&y); add_edge1(x,y,i); add_edge1(y,x,i); } memset(save,-1,sizeof(save)); memset(mark,0,sizeof(mark)); for(int i=0;i<N;i++) bin[i]=i; memset(bw,0,sizeof(bw)); // 记录每个点到父亲结点的距离 dfs(1,0); for(int i=0;i<m;i++) { printf("%d\n",save[i]); } } return 0; }