11 2019 档案
摘要:感知机是一种简单且易于实现的二分类判别模型,主要思想是通过误分类驱动的损失函数结合梯度下降发求解一个超平面将线性可分的数据集划分为两个不同的类别(+1类和-1类)。
在神经网络、支持向量机等算法盛行的当下,感知机模型应用得并不多,但必须承认,感知机却是神经网络和支持向量机的基础,所以还是很有必要学习一下的,本文接下来的内容将从感知机数学描述、损失函数、两种不同学习形式等方面详细介绍感知机,最后使用Python实现感知机两种学习形式。
阅读全文
摘要:前面的博客中我们说过,在加载数据和预处理数据时使用tf.data.Dataset对象将极大将我们从建模前的数据清理工作中释放出来,那么,怎么将自定义的数据集加载为DataSet对象呢?这对很多新手来说都是一个难题,因为绝大多数案例教学都是以mnist数据集作为例子讲述如何将数据加载到Dataset中,而英文资料对这方面的介绍隐藏得有点深。本文就来捋一捋如何加载自定义的图片数据集实现图片分类,后续将继续介绍如何加载自定义的text、mongodb等数据。
阅读全文
摘要:K-means算法是一种基于距离的聚类算法,这类聚类算法以距离来度量对象间的相似性,两样本对象间距离越大,相似性越小。
阅读全文
摘要:现如今的互联网世界里,代理服务已经十分常见,它通常作为一个第三方或者说中转站角色替代用户取得信息或者服务。
根据代理对象的不同,代理服务可以分为正向代理和反向代理。
阅读全文
摘要:上一篇博客中介绍了ID3和C4.5两种决策树算法,这两种决策树都只能用于分类问题,而本文要说的CART(classification and regression tree)决策树不仅能用于分类问题,也能用于回归问题。
阅读全文