随笔分类 - 自然语言处理
摘要:前几篇博文中介绍了Transformer,由于其优越的性能表现,在工业界使用的越来越广泛,同时,配合迁移学习理论,越来越多的Transformer预训练模型和源码库逐渐开源,Huggingface就是其中做的最为出色的一家机构。Huggingface是一家在NLP社区做出杰出贡献的纽约创业公司,其所提供的大量预训练模型和代码等资源被广泛的应用于学术研究当中。Huggingface所开源的Transformers提供了数以千计针对于各种任务的预训练模型模型,开发者可以根据自身的需要,选择模型进行训练或微调,也可阅读api文档和源码, 快速开发新模型。
阅读全文
摘要:2017年6月谷歌发布论文《Attention is All You Need》,提出Transformer这一引燃机器学习领域的算法。数年过去,Transformer算法在计算机视觉、自然语言处理等众多应用领域展现了极为惊艳的表现。
大家都是神经网络,为何你的腰椎间盘却如此突出?
可以说,Transformer是完全基于自注意力机制的一个深度学习模型,且适用于并行化计算,导致它在精度和性能上都要高于之前流行的RNN循环神经网络。
在接下来的篇幅中,我们来详细梳理Transformer算法各个细枝末节原理,并结合B站视频教程:【Transformer为什么比CNN好!】中的代码实现,展示Transformer的整个建模流程。
阅读全文
摘要:对于英文文本,句子中的词汇可以通过空格很容易得进行划分,但是在我们中文中则不然,没有明显的划分标志,所以需要通过专门的方法(算法)进行分词。在Python中,有多种库实现了各种方法支持中文分词,例如:jieba、hanlp、pkuseg等。在本篇中,先来说说jieba分词。
阅读全文