java多线程&&并发面试108问(中)

欢迎关注
CSDN:程序员小羊
微信公众号:程序员小羊
博客园:程序员小羊

目录

53、线程基本方法

线程相关的基本方法有 wait, notify, notifyAll, sleep, join, yield 等。

54、线程等待(wait)

调用该方法的线程进入 WAITING 状态,只有等待另外线程的通知或被中断才会返回,需要注意的是调用 wait()方法后, 会释放对象的锁。因此, wait 方法一般用在同步方法或同步代码块中。

55、线程睡眠(sleep)

sleep 导致当前线程休眠,与 wait 方法不同的是 sleep 不会释放当前占有的锁,sleep(long)会导致线程进入 TIMED-WATING 状态,而 wait()方法会导致当前线程进入 WATING 状态

56、线程让步(yield)

yield 会使当前线程让出 CPU 执行时间片,与其他线程一起重新竞争 CPU 时间片。一般情况下, 优先级高的线程有更大的可能性成功竞争得到 CPU 时间片, 但这又不是绝对的,有的操作系统对线程优先级并不敏感。

57、线程中断(interrupt)

中断一个线程,其本意是给这个线程一个通知信号,会影响这个线程内部的一个中断标识位。 这个线程本身并不会因此而改变状态(如阻塞,终止等)。

  1. 调用 interrupt()方法并不会中断一个正在运行的线程。也就是说处于 Running 状态的线程并不会因为被中断而被终止,仅仅改变了内部维护的中断标识位而已。
  2. 若调用 sleep()而使线程处于 TIMED-WATING 状态,这时调用 interrupt()方法,会抛出
    InterruptedException,从而使线程提前结束 TIMED-WATING 状态。
  3. 许多声明抛出 InterruptedException 的方法(如 Thread.sleep(long mills 方法)),抛出异常前,都会清除中断标识位,所以抛出异常后,调用 isInterrupted()方法将会返回 false。
  4. 中断状态是线程固有的一个标识位,可以通过此标识位安全的终止线程。比如,你想终止一个线程 thread 的时候,可以调用 thread.interrupt()方法,在线程的 run 方法内部可以根据 thread.isInterrupted()的值来优雅的终止线程。

58、Join 等待其他线程终止

join() 方法,等待其他线程终止,在当前线程中调用一个线程的 join() 方法,则当前线程转为阻塞状态,回到另一个线程结束,当前线程再由阻塞状态变为就绪状态,等待 cpu 的宠幸。

59、为什么要用 join()方法?

很多情况下,主线程生成并启动了子线程,需要用到子线程返回的结果,也就是需要主线程需要在子线程结束后再结束,这时候就要用到 join() 方法 。

System.out.println(Thread.currentThread().getName() + "线程运行开始!"); 
Thread6 thread1 = new Thread6();
thread1.setName("线程 B"); thread1.join();
System.out.println("这时 thread1 执行完毕之后才能执行主线程");

60、线程唤醒(notify)

Object 类中的 notify() 方法, 唤醒在此对象监视器上等待的单个线程,如果所有线程都在此对象上等待,则会选择唤醒其中一个线程,选择是任意的,并在对实现做出决定时发生,线程通过调用其中一个 wait() 方法,在对象的监视器上等待, 直到当前的线程放弃此对象上的锁定,才能继续执行被唤醒的线程,被唤醒的线程将以常规方式与在该对象上主动同步的其他所有线程进行竞争。类似的方法还有 notifyAll() ,唤醒再次监视器上等待的所有线程。

61、线程其他方法

  1. sleep():强迫一个线程睡眠N毫秒。
  2. isAlive(): 判断一个线程是否存活。
  3. join(): 等待线程终止。
  4. activeCount(): 程序中活跃的线程数。
  5. enumerate(): 枚举程序中的线程。
  6. currentThread(): 得到当前线程。
  7. isDaemon(): 一个线程是否为守护线程。
  8. setDaemon(): 设置一个线程为守护线程。 (用户线程和守护线程的区别在于,是否等待主线程依赖于主线程结束而结束)
  9. setName(): 为线程设置一个名称。
  10. wait(): 强迫一个线程等待。
  11. notify(): 通知一个线程继续运行。
  12. setPriority(): 设置一个线程的优先级。
  13. getPriority()::获得一个线程的优先级。

62、进程

(有时候也称做任务)是指一个程序运行的实例。在 Linux 系统中,线程就是能并行运行并且与他们的父进程(创建他们的进程)共享同一地址空间(一段内存区域)和其他资源的轻量 级的进程。

63、上下文

是指某一时间点 CPU 寄存器和程序计数器的内容。

64、寄存器

是 CPU 内部的数量较少但是速度很快的内存(与之对应的是 CPU 外部相对较慢的 RAM 主内存)。寄存器通过对常用值(通常是运算的中间值)的快速访问来提高计算机程序运行的速度。

65、程序计数器

是一个专用的寄存器, 用于表明指令序列中 CPU 正在执行的位置,存的值为正在执行的指令的位置或者下一个将要被执行的指令的位置,具体依赖于特定的系统。

66、PCB-“切换桢”

上下文切换可以认为是内核(操作系统的核心)在 CPU 上对于进程(包括线程)进行切换,上下文切换过程中的信息是保存在进程控制块(PCB, process control block)中的。 PCB 还经常被称作“切换桢”(switchframe)。 信息会一直保存到 CPU 的内存中,直到他们被再次使用。

67、上下文切换的活动

  1. 挂起一个进程,将这个进程在 CPU 中的状态(上下文)存储于内存中的某处。
  2. 在内存中检索下一个进程的上下文并将其在 CPU 的寄存器中恢复。
  3. 跳转到程序计数器所指向的位置(即跳转到进程被中断时的代码行),以恢复该进程在程序中。

68、引起线程上下文切换的原因

  1. 当前执行任务的时间片用完之后,系统 CPU 正常调度下一个任务;
  2. 当前执行任务碰到 IO 阻塞,调度器将此任务挂起,继续下一任务;
  3. 多个任务抢占锁资源,当前任务没有抢到锁资源,被调度器挂起,继续下一任务;
  4. 用户代码挂起当前任务,让出 CPU 时间;
  5. 硬件中断;

69、同步锁

当多个线程同时访问同一个数据时,很容易出现问题。为了避免这种情况出现,我们要保证线程同步互斥,就是指并发执行的多个线程,在同一时间内只允许一个线程访问共享数据。 Java 中可以使用 synchronized 关键字来取得一个对象的同步锁。

70、死锁

何为死锁,就是多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。

71、线程池原理

线程池做的工作主要是控制运行的线程的数量,处理过程中将任务放入队列,然后在线程创建后启动这些任务,如果线程数量超过了最大数量超出数量的线程排队等候,等其它线程执行完毕, 再从队列中取出任务来执行。 他的主要特点为: 线程复用; 控制最大并发数; 管理线程。

72、线程复

每一个 Thread 的类都有一个 start 方法。 当调用 start 启动线程时 Java 虚拟机会调用该类的 run
方法。 那么该类的 run() 方法中就是调用了 Runnable 对象的 run() 方法。 我们可以继承重写
Thread 类,在其 start 方法中添加不断循环调用传递过来的 Runnable 对象。 这就是线程池的实现原理。 循环方法中不断获取 Runnable 是用 Queue 实现的,在获取下一个 Runnable 之前可以是阻塞的 。

73、线程池的组成

一般的线程池主要分为以下 4 个组成部分:

  1. 线程池管理器:用于创建并管理线程池
  2. 工作线程:线程池中的线程
  3. 任务接口:每个任务必须实现的接口,用于工作线程调度其运行
  4. 任务队列:用于存放待处理的任务,提供一种缓冲机制
    Java 中的线程池是通过 Executor 框架实现的,该框架中用到了 Executor, Executors, ExecutorService, ThreadPoolExecutor , Callable 和 Future、 FutureTask 这几个类。
    在这里插入图片描述
    ThreadPoolExecutor 的构造方法如下:
public ThreadPoolExecutor(
	int corePoolSize,
	int maximumPoolSize, 
	long keepAliveTime, 
	TimeUnit unit, 
	BlockingQueue<Runnable> workQueue) {
	this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, xecutors.defaultThreadFactory(), defaultHandler);
}
  1. corePoolSize:指定了线程池中的线程数量。
  2. maximumPoolSize:指定了线程池中的最大线程数量。
  3. keepAliveTime:当前线程池数量超过 corePoolSize 时,多余的空闲线程的存活时间,即多次时间内会被销毁。
  4. unit: keepAliveTime 的单位。
  5. workQueue:任务队列,被提交但尚未被执行的任务。
  6. threadFactory:线程工厂,用于创建线程,一般用默认的即可。
  7. handler:拒绝策略,当任务太多来不及处理,如何拒绝任务。

74、拒绝策略

线程池中的线程已经用完了,无法继续为新任务服务,同时,等待队列也已经排满了,再也塞不下新任务了。这时候我们就需要拒绝策略机制合理的处理这个问题。
JDK 内置的拒绝策略如下:

  1. AbortPolicy : 直接抛出异常,阻止系统正常运行。
  2. CallerRunsPolicy : 只要线程池未关闭,该策略直接在调用者线程中,运行当前被丢弃的任务。显然这样做不会真的丢弃任务,但是,任务提交线程的性能极有可能会急剧下降。
  3. DiscardOldestPolicy : 丢弃最老的一个请求,也就是即将被执行的一个任务,并尝试再次提交当前任务。
  4. DiscardPolicy : 该策略默默地丢弃无法处理的任务,不予任何处理。如果允许任务丢失,这是最好的一种方案。
    以上内置拒绝策略均实现了 RejectedExecutionHandler 接口,若以上策略仍无法满足实际需要,完全可以自己扩展 RejectedExecutionHandler 接口。

75、Java 线程池工作过程

  1. 线程池刚创建时,里面没有一个线程。任务队列是作为参数传进来的。不过,就算队列里面有任务,线程池也不会马上执行它们。
  2. 当调用 execute() 方法添加一个任务时,线程池会做如下判断:
    a. 如果正在运行的线程数量小于 corePoolSize,那么马上创建线程运行这个任务;
    b. 如果正在运行的线程数量大于或等于 corePoolSize,那么将这个任务放入队列;
    c. 如果这时候队列满了,而且正在运行的线程数量小于 maximumPoolSize,那么还是要创建非核心线程立刻运行这个任务;
    d. 如果队列满了,而且正在运行的线程数量大于或等于 maximumPoolSize,那么线程池会抛出异常 RejectExecutionException。
  3. 当一个线程完成任务时,它会从队列中取下一个任务来执行。
  4. 当一个线程无事可做,超过一定的时间(keepAliveTime)时,线程池会判断,如果当前运行的线程数大于 corePoolSize,那么这个线程就被停掉。所以线程池的所有任务完成后,它最终会收缩到 corePoolSize 的大小。

76、JAVA 阻塞队列原理

阻塞队列,关键字是阻塞,先理解阻塞的含义,在阻塞队列中,线程阻塞有这样的两种情况:

  1. 当队列中没有数据的情况下,消费者端的所有线程都会被自动阻塞(挂起),直到有数据放入队列。
  2. 当队列中填满数据的情况下,生产者端的所有线程都会被自动阻塞(挂起),直到队列中有空的位置,线程被自动唤醒。
    阻塞队列的主要方法 :
    在这里插入图片描述

抛出异常:抛出一个异常;
特殊值:返回一个特殊值(null 或 false,视情况而定) 则塞:在成功操作之前,一直阻塞线程
超时:放弃前只在最大的时间内阻塞
插入操作

  1. public abstract boolean add(E paramE): 将指定元素插入此队列中(如果立即可行且不会违反容量限制),成功时返回 true,如果当前没有可用的空间,则抛出 IllegalStateException。如果该元素是 NULL,则会抛出 NullPointerException 异常。
  2. public abstract boolean offer(E paramE): 将指定元素插入此队列中(如果立即可行且不会违反容量限制),成功时返回 true,如果当前没有可用的空间,则返回 false。
  3. public abstract void put(E paramE) throws InterruptedException: 将指定元素插入此队列中,将等待可用的空间(如果有必要)
public void put(E paramE) throws InterruptedException { 
	checkNotNull(paramE);
	ReentrantLock localReentrantLock = this.lock; localReentrantLock.lockInterruptibly();
	try {
		while (this.count == this.items.length)
		this.notFull.await();//如果队列满了,则线程阻塞等待enqueue(paramE);
		localReentrantLock.unlock();
	} finally {
		localReentrantLock.unlock();
	}
}
  1. offer(E o, long timeout, TimeUnit unit): 可以设定等待的时间, 如果在指定的时间内, 还不能往队列中加入 BlockingQueue, 则返回失败。
    获取数据操作:
  2. poll(time):取走 BlockingQueue 里排在首位的对象,若不能立即取出,则可以等 time 参数规定的时间,取不到时返回 null;
  3. poll(long timeout, TimeUnit unit): 从 BlockingQueue 取出一个队首的对象, 如果在指定时间内, 队列一旦有数据可取, 则立即返回队列中的数据。否则直到时间超时还没有数据可取,返回失败。
  4. take():取走 BlockingQueue 里排在首位的对象,若 BlockingQueue 为空,阻断进入等待状态直到 BlockingQueue 有新的数据被加入。
  5. drainTo():一次性从 BlockingQueue 获取所有可用的数据对象(还可以指定获取数据的个数),通过该方法,可以提升获取数据效率;不需要多次分批加锁或释放锁。

77、Java 中的阻塞队列

  1. ArrayBlockingQueue :由数组结构组成的有界阻塞队列。
  2. LinkedBlockingQueue :由链表结构组成的有界阻塞队列。
  3. PriorityBlockingQueue :支持优先级排序的无界阻塞队列。
  4. DelayQueue:使用优先级队列实现的无界阻塞队列。
  5. SynchronousQueue:不存储元素的阻塞队列。
  6. LinkedTransferQueue:由链表结构组成的无界阻塞队列。
  7. LinkedBlockingDeque:由链表结构组成的双向阻塞队列
    在这里插入图片描述

78、ArrayBlockingQueue(公平、非公平)

用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序。 默认情况下不保证访问者公平的访问队列,所谓公平访问队列是指阻塞的所有生产者线程或消费者线程,当队列可用时,可以按照阻塞的先后顺序访问队列,即先阻塞的生产者线程,可以先往队列里插入元素,先阻塞的消费者线程,可以先从队列里获取元素。通常情况下为了保证公平性会降低吞吐量。我们可以使用以下代码创建一个公平的阻塞队列


ArrayBlockingQueue fairQueue = new ArrayBlockingQueue(1000,true);

79、LinkedBlockingQueue(两个独立锁提高并发)

基于链表的阻塞队列,同 ArrayListBlockingQueue 类似,此队列按照先进先出(FIFO)的原则对元素进行排序。而 LinkedBlockingQueue 之所以能够高效的处理并发数据,还因为其对于生产者端和消费者端分别采用了独立的锁来控制数据同步,这也意味着在高并发的情况下生产者和消费者可以并行地操作队列中的数据,以此来提高整个队列的并发性能。LinkedBlockingQueue 会默认一个类似无限大小的容量(Integer.MAX_VALUE)

80、PriorityBlockingQueue(compareTo 排序实现优先)

是一个支持优先级的无界队列。默认情况下元素采取自然顺序升序排列。 可以自定义实现
compareTo()方法来指定元素进行排序规则,或者初始化 PriorityBlockingQueue 时,指定构造参数 Comparator 来对元素进行排序。需要注意的是不能保证同优先级元素的顺序。]]>java多线程&amp;并发面试108问(下)http://www.cnblogs.com/cxyxy/archive/2020/07/07/13260437.htmldc:creator程序员小羊</dc:creator>程序员小羊Tue, 07 Jul 2020 06:01:00 GMThttp://www.cnblogs.com/cxyxy/archive/2020/07/07/13260437.html<![CDATA[> 欢迎关注

CSDN:程序员小羊
微信公众号:程序员小羊

目录

80、PriorityBlockingQueue(compareTo 排序实现优先)

是一个支持优先级的无界队列。默认情况下元素采取自然顺序升序排列。 可以自定义实现compareTo()方法来指定元素进行排序规则,或者初始化 PriorityBlockingQueue 时,指定构造参数 Comparator 来对元素进行排序。需要注意的是不能保证同优先级元素的顺序。.

81、DelayQueue(缓存失效、定时任务 )

是一个支持延时获取元素的无界阻塞队列。队列使用 PriorityQueue 来实现。队列中的元素必须实现 Delayed 接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。我们可以将 DelayQueue 运用在以下应用场景:

  1. 缓存系统的设计:可以用 DelayQueue 保存缓存元素的有效期,使用一个线程循环查询
    DelayQueue,一旦能从 DelayQueue 中获取元素时,表示缓存有效期到了。
  2. 定 时 任 务 调 度 : 使 用 DelayQueue 保 存 当 天 将 会 执 行 的 任 务 和 执 行 时 间 , 一 旦 从
    DelayQueue 中获取到任务就开始执行,从比如 TimerQueue 就是使用 DelayQueue 实现的

82、SynchronousQueue(不存储数据、可用于传递数据)

是一个不存储元素的阻塞队列。每一个 put 操作必须等待一个 take 操作,否则不能继续添加元素。SynchronousQueue 可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列本身并不存储任何元素,非常适合于传递性场景,比如在一个线程中使用的数据,传递给另 外 一 个 线 程 使 用 , SynchronousQueue 的 吞 吐 量 高 于 LinkedBlockingQueue 和ArrayBlockingQueue。

83、LinkedTransferQueue

是 一 个 由 链 表 结 构 组 成 的 无 界 阻 塞 TransferQueue 队 列 。 相 对 于 其 他 阻 塞 队 列 ,
LinkedTransferQueue 多了 tryTransfer 和 transfer 方法。

  1. transfer 方法: 如果当前有消费者正在等待接收元素(消费者使用 take()方法或带时间限制的poll()方法时), transfer 方法可以把生产者传入的元素立刻 transfer(传输)给消费者。如果没有消费者在等待接收元素, transfer 方法会将元素存放在队列的 tail 节点,并等到该元素被消费者消费了才返回。
  2. tryTransfer 方法。则是用来试探下生产者传入的元素是否能直接传给消费者。如果没有消费者等待接收元素,则返回 false。和 transfer 方法的区别是 tryTransfer 方法无论消费者是否接收,方法立即返回。而 transfer 方法是必须等到消费者消费了才返回。
    对于带有时间限制的 tryTransfer(E e, long timeout, TimeUnit unit)方法,则是试图把生产者传入的元素直接传给消费者,但是如果没有消费者消费该元素则等待指定的时间再返回,如果超时还没消费元素,则返回 false,如果在超时时间内消费了元素,则返回 true。

84、LinkedBlockingDeque

是一个由链表结构组成的双向阻塞队列。所谓双向队列指的你可以从队列的两端插入和移出元素。双端队列因为多了一个操作队列的入口,在多线程同时入队时,也就减少了一半的竞争。相比其 他的阻塞队列, LinkedBlockingDeque 多了 addFirst, addLast, offerFirst, offerLast, peekFirst, peekLast 等方法,以 First 单词结尾的方法,表示插入,获取(peek)或移除双端队列的第一个元素。以 Last 单词结尾的方法,表示插入,获取或移除双端队列的最后一个元素。另外插入方法 add 等同于 addLast,移除方法 remove 等效于 removeFirst。但是 take 方法却等同于 takeFirst,不知道是不是 Jdk 的 bug,使用时还是用带有 First 和 Last 后缀的方法更清楚。
在初始化 LinkedBlockingDeque 时可以设置容量防止其过渡膨胀。另外双向阻塞队列可以运用在
“工作窃取”模式中。

85、在 java 中守护线程和本地线程区别

java 中的线程分为两种:守护线程(Daemon)和用户线程(User)。
任何线程都可以设置为守护线程和用户线程,通过方法 Thread.setDaemon(boolon);true 则把该线程设置为守护线程,反之则为用户线程。Thread.setDaemon() 必须在 Thread.start()之前调用,否则运行时会抛出异常。
两者的区别:
唯一的区别是判断虚拟机( JVM)何时离开,Daemon 是为其他线程提供服务,如果全部的 User Thread 已经撤离,Daemon 没有可服务的线程,JVM 撤离。也可以理解为守护线程是 JVM 自动创建的线程(但不一定),用户线程是程序创建的线程;比如 JVM 的垃圾回收线程是一个守护线程,当所有线程已经撤离,不再产生垃圾,守护线程自然就没事可干了,当垃圾回收线程是 Java 虚拟机上仅剩的线程时,Java 虚拟机会自动离开。
扩展:
Thread Dump 打印出来的线程信息,含有 daemon 字样的线程即为守护
进程,可能会有:服务守护进程、编译守护进程、windows 下的监听 Ctrl+break
的守护进程、Finalizer 守护进程、引用处理守护进程、GC 守护进程。

86、线程与进程的区别?

进程是操作系统分配资源的最小单元,线程是操作系统调度的最小单元。一个程序至少有一个进程,一个进程至少有一个线程。

87、什么是多线程中的上下文切换?

多线程会共同使用一组计算机上的 CPU,而线程数大于给程序分配的 CPU 数量时, 为了让各个线程都有执行的机会,就需要轮转使用 CPU。不同的线程切换使用 CPU 发生的切换数据等就是上下文切换。

88、死锁与活锁的区别,死锁与饥饿的区别?

死锁:是指两个或两个以上的进程(或线程)在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。
产生死锁的必要条件:

  1. 互斥条件:所谓互斥就是进程在某一时间内独占资源。
  2. 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
  3. 不剥夺条件:进程已获得资源,在末使用完之前,不能强行剥夺。
  4. 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
    活锁:任务或者执行者没有被阻塞,由于某些条件没有满足,导致一直重复尝试, 失败,尝试,失败。
    活锁和死锁的区别在于,处于活锁的实体是在不断的改变状态,所谓的“活”, 而处于死锁的实体表现为等待;活锁有可能自行解开,死锁则不能。
    饥饿:一个或者多个线程因为种种原因无法获得所需要的资源,导致一直无法执行的状态。

Java 中导致饥饿的原因:

  1. 高优先级线程吞噬所有的低优先级线程的 CPU 时间。
  2. 线程被永久堵塞在一个等待进入同步块的状态,因为其他线程总是能在它之前持续地对该同步块进行访问。
  3. 线程在等待一个本身也处于永久等待完成的对象(比如调用这个对象的 wait 方法),因为其他线程总是被持续地获得唤醒。

89、Java 中用到的线程调度算法是什么?

采用时间片轮转的方式。可以设置线程的优先级,会映射到下层的系统上面的优先级上,如非特别需要,尽量不要用,防止线程饥饿。

90、什么是线程组,为什么在 Java 中不推荐使用?

ThreadGroup 类,可以把线程归属到某一个线程组中,线程组中可以有线程对象, 也可以有线程组,组中还可以有线程,这样的组织结构有点类似于树的形式。
为什么不推荐使用?因为使用有很多的安全隐患吧,没有具体追究,如果需要使用,推荐使用线程池。

91、为什么使用 Executor 框架?

每次执行任务创建线程 new Thread()比较消耗性能,创建一个线程是比较耗时、耗资源的。
调用 new Thread()创建的线程缺乏管理,被称为野线程,而且可以无限制的创建, 线程之间的相互竞争会导致过多占用系统资源而导致系统瘫痪,还有线程之间的频繁交替也会消耗很多系统资源。
接使用 new Thread() 启动的线程不利于扩展,比如定时执行、定期执行、定时定期执行、线程中断等都不便实现。

92、在 Java 中 Executor 和 Executors 的区别?

Executors 工具类的不同方法按照我们的需求创建了不同的线程池,来满足业务的需求。
Executor 接口对象能执行我们的线程任务。
ExecutorService 接口继承了 Executor 接口并进行了扩展,提供了更多的方法我们能获得任务执行的状态并且可以获取任务的返回值。使用 ThreadPoolExecutor 可以创建自定义线程池。
Future 表示异步计算的结果,他提供了检查计算是否完成的方法,以等待计算的完成,并可以使用 get()方法获取计算的结果。

93、如何在 Linux 上查找哪个线程使用的 CPU 时间最长?

参考:
https://blog.csdn.net/ZYC88888/article/details/79993243

94、什么是原子操作?在 Java Concurrency API 中有哪些原子类(atomic classes)?

原子操作(atomic operation)意为”不可被中断的一个或一系列操作” 。处理器使用基于对缓存加锁或总线加锁的方式来实现多处理器之间的原子操作。在 Java 中可以通过锁和循环 CAS 的方式来实现原子操作。 CAS 操作——
Compare & Set,或是 Compare & Swap,现在几乎所有的 CPU 指令都支持 CAS的原子操作。

原子操作是指一个不受其他操作影响的操作任务单元。原子操作是在多线程环境下避免数据不一致必须的手段。
int++并不是一个原子操作,所以当一个线程读取它的值并加 1 时,另外一个线程有可能会读到之前的值,这就会引发错误。为了解决这个问题,必须保证增加操作是原子的,在 JDK1.5 之前我们可以使用同步技术来做到这一点。到 JDK1.5,
java.util.concurrent.atomic 包提供了 int 和long 类型的原子包装类,它们可以自动的保证对于他们的操作是原子的并且不需要使用同步。

java.util.concurrent 这个包里面提供了一组原子类。其基本的特性就是在多线程环境下,当有多个线程同时执行这些类的实例包含的方法时,具有排他性,即当某个线程进入方法,执行其中的指令时,不会被其他线程打断,而别的线程就像自旋锁一样,一直等到该方法执行完成,才由 JVM 从等待队列中选择一个另一个线程进入,这只是一种逻辑上的理解。

原 子 类 :AtomicBoolean,AtomicInteger,AtomicLong,AtomicReference 原子数组:AtomicIntegerArray,AtomicLongArray,AtomicReferenceArray
原子属性更新器:AtomicLongFieldUpdater,AtomicIntegerFieldUpdater,AtomicReferenceFieldUpdater
解决 ABA 问题的原子类:AtomicMarkableReference(通过引入一个 boolean来反映中间有没有变过),AtomicStampedReference(通过引入一个 int 来累加来反映中间有没有变过)

95、Java Concurrency API 中的 Lock 接口(Lock interface)是什么?对比同步它有什么优势?

Lock 接口比同步方法和同步块提供了更具扩展性的锁操作。他们允许更灵活的结构,可以具有完全不同的性质,并且可以支持多个相关类的条件对象。
它的优势有:
可以使锁更公平
可以使线程在等待锁的时候响应中断
可以让线程尝试获取锁,并在无法获取锁的时候立即返回或者等待一段时间可以在不同的范围,以不同的顺序获取和释放锁

整体上来说 Lock 是 synchronized 的扩展版,Lock 提供了无条件的、可轮询的(tryLock 方法)、定时的(tryLock 带参方法)、可中断的
(lockInterruptibly)、可多条件队列的(newCondition 方法)锁操作。另外 Lock 的实现类基本都支持非公平锁(默认)和公平锁,synchronized 只支持非公平锁,当然,在大部分情况下,非公平锁是高效的选择。

96、什么是 Executors 框架?

Executor 框架是一个根据一组执行策略调用,调度,执行和控制的异步任务的框架。无限制的创建线程会引起应用程序内存溢出。所以创建一个线程池是个更好的的解决方案,因为可以限制线程的数量并且可以回收再利用这些线程。利用Executors 框架可以非常方便的创建一个线程池。

97、什么是阻塞队列?阻塞队列的实现原理是什么?如何使用阻塞队列来实现生产者-消费者 模型?

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非 空。当队列满时,存储元素的线程会等待队列可用。阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。
JDK7 提供了 7 个阻塞队列。分别是:
ArrayBlockingQueue :一个由数组结构组成的有界阻塞队列。
LinkedBlockingQueue :一个由链表结构组成的有界阻塞队列。
PriorityBlockingQueue :一个支持优先级排序的无界阻塞队列。
DelayQueue:一个使用优先级队列实现的无界阻塞队列。
SynchronousQueue:一个不存储元素的阻塞队列。
LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。
Java 5 之前实现同步存取时,可以使用普通的一个集合,然后在使用线程的协作和线程同步可以实现生产者,消费者模式,主要的技术就是用好,wait ,notify,notifyAll,sychronized 这些关键字。而在 java 5 之后,可以使用阻塞队列来实现,此方式大大简少了代码量,使得多线程编程更加容易,安全方面也有保障。
BlockingQueue 接口是 Queue 的子接口,它的主要用途并不是作为容器,而是作为线程同步的的工具,因此他具有一个很明显的特性,当生产者线程试图向BlockingQueue 放入元素时,如果队列已满,则线程被阻塞,当消费者线程试图从中取出一个元素时,如果队列为空, 则该线程会被阻塞,正是因为它所具有这个特性,所以在程序中多个线程交替向 BlockingQueue 中放入元素,取出元素,它可以很好的控制线程之间的通信。
阻塞队列使用最经典的场景就是 socket 客户端数据的读取和解析,读取数据的线程不断将数据放入队列,然后解析线程不断从队列取数据解析。

98、什么是 Callable 和 Future?

Callable 接口类似于 Runnable,从名字就可以看出来了,但是 Runnable 不会返回结果,并且无法抛出返回结果的异常,而 Callable 功能更强大一些,被线程执行后,可以返回值,这个返回值可以被 Future 拿到,也就是说,Future 可以拿到异步执行任务的返回值。可以认为是带有回调的 Runnable。
Future 接口表示异步任务,是还没有完成的任务给出的未来结果。所以说 Callable
用于产生结果,Future 用于获取结果。

99、什么是 FutureTask?使用 ExecutorService 启动任务。

在 Java 并发程序中 FutureTask 表示一个可以取消的异步运算。它有启动和取消运算、查询运算是否完成和取回运算结果等方法。只有当运算完成的时候结果才能取回,如果运算尚未完成 get 方法将会阻塞。一个 FutureTask 对象可以对调用了 Callable 和 Runnable 的对象进行包装,由于 FutureTask 也是调用了 Runnable接口所以它可以提交给 Executor 来执行。

100、什么是并发容器的实现?

何为同步容器:可以简单地理解为通过 synchronized 来实现同步的容器,如果有多个线程调用同步容器的方法,它们将会串行执行。比如Vector,Hashtable,以及 Collections.synchronizedSet,synchronizedList 等方法返回的容器。可以通过查看 Vector,Hashtable 等这些同步容器的实现代码,可以看到这些容器实现线程安全的方式就是将它们的状态封装起来,并在需要同步的方法上加上关键字
synchronized。
并发容器使用了与同步容器完全不同的加锁策略来提供更高的并发性和伸缩性,例如在 ConcurrentHashMap 中采用了一种粒度更细的加锁机制,可以称为分段锁,在这种锁机制下,允许任意数量的读线程并发地访问 map,并且执行读操作的线程和写操作的线程也可以并发的访问 map,同时允许一定数量的写操作线程并发地修改 map,所以它可以在并发环境下实现更高的吞吐量。

101、多线程同步和互斥有几种实现方法,都是什么?

线程同步是指线程之间所具有的一种制约关系,一个线程的执行依赖另一个线程的消息,当它没有得到另一个线程的消息时应等待,直到消息到达时才被唤醒。线程互斥是指对于共享的进程系统资源,在各单个线程访问时的排它性。当有若干个线程都要使用某一共享资源时,任何时刻最多只允许一个线程去使用,其它要使用该资源的线程必须等待,直到占用资源者释放该资源。线程互斥可以看成是一种特殊的线程同步。

线程间的同步方法大体可分为两类:用户模式和内核模式。顾名思义,内核模式就是指利用系统内核对象的单一性来进行同步,使用时需要切换内核态与用户态,而用户模式就是不需要切换到内核态,只在用户态完成操作。用户模式下的方法有:原子操作(例如一个单一的全局变量),临界区。内核模式下的方法有:事件,信号量,互斥量。

102、什么是竞争条件?你怎样发现和解决竞争?

当多个进程都企图对共享数据进行某种处理,而最后的结果又取决于进程运行的顺序时,则我们认为这发生了竞争条件(race condition)。

103、为什么我们调用 start()方法时会执行 run()方法,为什么我们不能直接调用 run()方法?

当你调用 start()方法时你将创建新的线程,并且执行在 run()方法里的代码。但是如果你直接调用 run()方法,它不会创建新的线程也不会执行调用线程的代码,只会把 run 方法当作普通方法去执行。

104、Java 中你怎样唤醒一个阻塞的线程?

在 Java 发展史上曾经使用 suspend()、resume()方法对于线程进行阻塞唤醒,但随之出现很多问题,比较典型的还是死锁问题。解决方案可以使用以对象为目标的阻塞,即利用 Object 类的 wait()和 notify()方法实现线程阻塞。
首先,wait、notify 方法是针对对象的,调用任意对象的 wait()方法都将导致线程阻塞,阻塞的同时也将释放该对象的锁,相应地,调用任意对象的 notify()方法则将随机解除该对象阻塞的线程,但它需要重新获取改对象的锁,直到获取成功才能往下执行;其次,wait、notify 方法必须在 synchronized 块或方法中被调用,并且要保证同步块或方法的锁对象与调用 wait、notify 方法的对象是同一个,如此一来在调用 wait 之前当前线程就已经成功获取某对象的锁,执行 wait 阻塞后当前线程就将之前获取的对象锁释放。

105、在 Java 中 CycliBarriar 和 CountdownLatch 有什么区别?

CyclicBarrier 可以重复使用,而 CountdownLatch 不能重复使用。 Java 的 concurrent 包里面的 CountDownLatch 其实可以把它看作一个计数器,只不过这个计数器的操作是原子操作,同时只能有一个线程去操作这个计数器,也就是同时只能有一个线程去减这个计数器里面的值。你可以向 CountDownLatch 对象设置一个初始的数字作为计数值,任何调用这个对象上的 await()方法都会阻塞,直到这个计数器的计数值被其他的线程减为 0 为止。

所以在当前计数到达零之前,await 方法会一直受阻塞。之后,会释放所有等待的线程,await 的所有后续调用都将立即返回。这种现象只出现一次——计数无法被重置。如果需要重置计数,请考虑使用 CyclicBarrier。

CountDownLatch 的一个非常典型的应用场景是:有一个任务想要往下执行,但必须要等到其他的任务执行完毕后才可以继续往下执行。假如我们这个想要继续往下执行的任务调用一个 CountDownLatch 对象的 await()方法,其他的任务执行完自己的任务后调用同一个CountDownLatch 对象上的 countDown()方法,这个调用 await()方法的任务将一直阻塞等待,直到这个 CountDownLatch 对象的计数值减到 0 为止。

CyclicBarrier 一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrie在释放等待线程后可以重用,所以称它为循环 的barrier。

106、什么是不可变对象,它对写并发应用有什么帮助

不可变对象(Immutable Objects)即对象一旦被创建它的状态(对象的数据,也即对象属性值)就不能改变,反之即为可变对象(Mutable
Objects)。不可变对象的类即为不可变类(Immutable Class)。Java 平台类库中包含许多不可变类,如 String、基本类型的包装类、
BigInteger 和 BigDecimal 等。不可变对象天生是线程安全的。它们的常量(域)是在构造函数中创建的。既然它们的状态无法修改,这些常量永远不会变。
不可变对象永远是线程安全的。
只有满足如下状态,一个对象才是不可变的; 它的状态不能在创建后再被修改;
所有域都是 final 类型;并且,
它被正确创建(创建期间没有发生 this 引用的逸出)。

107、Java 中用到的线程调度算法是什么?

计算机通常只有一个 CPU,在任意时刻只能执行一条机器指令,每个线程只有获得CPU 的使用权才能执行指令.所谓多线程的并发运行,其实是指从宏观上看,各个线程轮流获得 CPU 的使用权,分别执行各自的任务.在运行池中,会有多个处于就绪状态的线程在等待 CPU,JAVA 虚拟机的一项任务就是负责线程的调度,线程调度是指按照特定机制为多个线程分配CPU 的使用权.
有两种调度模型:分时调度模型和抢占式调度模型。分时调度模型是指让所有的线程轮流获得 cpu 的使用权,并且平均分配每个线程占用的CPU 的时间片这个也比较好理解。 java 虚拟机采用抢占式调度模型,是指优先让可运行池中优先级高的线程占用CPU,如果可运行池中的线程优先级相同,那么就随机选择一个线程,使其占用CPU。处于运行状态的线程会一直运行,直至它不得不放弃 CPU。

108、什么是线程组,为什么在 Java 中不推荐使用?

线程组和线程池是两个不同的概念,他们的作用完全不同,前者是为了方便线程的管理,后者是为了管理线程的生命周期,复用线程,减少创建销毁线程的开销。

欢迎关注
CSDN:程序员小羊
微信公众号:程序员小羊
博客园:程序员小羊

posted @ 2020-09-18 19:14  程序员小羊  阅读(320)  评论(0编辑  收藏  举报