基于Verilog语言的FIR滤波【程序和理解】
一直想找一个简单、清晰、明了的fir滤波器的设计,终于找到了一个可以应用的,和大家分享一下,有助于FPGA新手入门。
1.说道fir滤波器,滤波系数肯定是最重要的,因为后面程序中涉及到滤波系数问题,所以先来介绍,此处使用matlab来辅助求出。
①打开matlab中的start,toolbox,filter design,filter design & Analysis Tool,具体位置见下图。
②选择想要涉及的滤波器类型,本次以8阶fir滤波器为例。
设计参数:低通fir滤波器,采样精度是根据自己的输入数据来的,本例为25MHz,通过频率2MHz,截止频率8MHz,可以在specify order处选择几阶滤波器。
③把滤波器数据导出,选择export,在随后弹出的框中再次点击Export(本步骤可以改变数据的变量名),就可以看到命名为Num的滤波器系数出现在目录里。
可以看到如下结果,这个就是滤波器的系数了,新建一个txt文件,命名如图,把滤波器系数复制进去。
运行下面一段程序,生成的COF就是最后的量化数据,记录这组数据。
clc;
clear all ;
load COFFICIENT.dat;%加载系数
a1=COFFICIENT(1:1:length(COFFICIENT));
width = 16;%数据宽度8位
% 量化滤波器系数
COF = round(a1 .* (2^(width-1) - 1));%量化正弦波形数据并取整
2.在quartusII中建立一个工程,新建一个fir_filter模块,把我们计算出来的滤波器系数写在程序里面
`timescale 1 ns / 1 ns
module fir_filter
(
i_fpga_clk ,
i_rst_n ,
i_filter_in,
o_filter_out
);
input i_fpga_clk ; //25MHz
input i_rst_n ;
input signed [7:0] i_filter_in ; //数据速率25Mh
output signed [7:0] o_filter_out; //滤波输出
//==============================================================
//8阶滤波器系数,共9个系数,系数对称
//==============================================================
wire signed[15:0] coeff1 = 16'd239 ;
wire signed[15:0] coeff2 = 16'd1507;
wire signed[15:0] coeff3 = 16'd4397;
wire signed[15:0] coeff4 = 16'd7880;
wire signed[15:0] coeff5 = 16'd9493;
//===============================================================
// 延时链
//===============================================================
reg signed [7:0] delay_pipeline1 ;
reg signed [7:0] delay_pipeline2 ;
reg signed [7:0] delay_pipeline3 ;
reg signed [7:0] delay_pipeline4 ;
reg signed [7:0] delay_pipeline5 ;
reg signed [7:0] delay_pipeline6 ;
reg signed [7:0] delay_pipeline7 ;
reg signed [7:0] delay_pipeline8 ;
always@(posedge i_fpga_clk or negedge i_rst_n)
if(!i_rst_n)
begin
delay_pipeline1 <= 8'b0 ;
delay_pipeline2 <= 8'b0 ;
delay_pipeline3 <= 8'b0 ;
delay_pipeline4 <= 8'b0 ;
delay_pipeline5 <= 8'b0 ;
delay_pipeline6 <= 8'b0 ;
delay_pipeline7 <= 8'b0 ;
delay_pipeline8 <= 8'b0 ;
end
else
begin
delay_pipeline1 <= i_filter_in ;
delay_pipeline2 <= delay_pipeline1 ;
delay_pipeline3 <= delay_pipeline2 ;
delay_pipeline4 <= delay_pipeline3 ;
delay_pipeline5 <= delay_pipeline4 ;
delay_pipeline6 <= delay_pipeline5 ;
delay_pipeline7 <= delay_pipeline6 ;
delay_pipeline8 <= delay_pipeline7 ;
end
//================================================================
//加法,对称结构,减少乘法器的数目
//================================================================
reg signed [8:0] add_data1 ;
reg signed [8:0] add_data2 ;
reg signed [8:0] add_data3 ;
reg signed [8:0] add_data4 ;
reg signed [8:0] add_data5 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //x(0)+x(8)
if(!i_rst_n)
add_data1 <= 9'b0 ;
else
add_data1 <= i_filter_in + delay_pipeline8 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //x(1)+x(7)
if(!i_rst_n)
add_data2 <= 9'b0 ;
else
add_data2 <= delay_pipeline1 + delay_pipeline7 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //x(2)+x(6)
if(!i_rst_n)
add_data3 <= 9'b0 ;
else
add_data3 <= delay_pipeline2 + delay_pipeline6 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //x(3)+x(5)
if(!i_rst_n)
add_data4 <= 9'b0 ;
else
add_data4 <= delay_pipeline3 + delay_pipeline5 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //x(4)
if(!i_rst_n)
add_data5 <= 9'b0 ;
else
add_data5 <= {delay_pipeline4[7],delay_pipeline4} ;
//===================================================================
//乘法器
//====================================================================
reg signed [24:0] multi_data1 ;
reg signed [24:0] multi_data2 ;
reg signed [24:0] multi_data3 ;
reg signed [24:0] multi_data4 ;
reg signed [24:0] multi_data5 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //(x(0)+x(8))*h(0)
if(!i_rst_n)
multi_data1 <= 24'b0 ;
else
multi_data1 <= add_data1*coeff1 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //(x(1)+x(7))*h(1)
if(!i_rst_n)
multi_data2 <= 24'b0 ;
else
multi_data2 <= add_data2*coeff2 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //(x(2)+x(6))*h(2)
if(!i_rst_n)
multi_data3 <= 24'b0 ;
else
multi_data3 <= add_data3*coeff3 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //(x(0)+x(8))*h(3)
if(!i_rst_n)
multi_data4 <= 24'b0 ;
else
multi_data4 <= add_data4*coeff4 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //x(4)*h(4)
if(!i_rst_n)
multi_data5 <= 24'b0 ;
else
multi_data5 <= add_data5*coeff5 ;
//========================================================================
//流水线累加
//========================================================================
reg signed[25:0] add_level1_1;//1级
reg signed[25:0] add_level1_2;//1级
reg signed[25:0] add_level1_3;//1级
always@(posedge i_fpga_clk or negedge i_rst_n) //(x(0)+x(8))*h(0)+(x(1)+x(7))*h(1)
if(!i_rst_n)
add_level1_1 <= 26'b0 ;
else
add_level1_1 <= multi_data1+multi_data2 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //(x(2)+x(6))*h(2)+(x(3)+x(5))*h(3)
if(!i_rst_n)
add_level1_2 <= 26'b0 ;
else
add_level1_2 <= multi_data3+multi_data4 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //x(4)*h(4)
if(!i_rst_n)
add_level1_3 <= 26'b0 ;
else
add_level1_3 <= {multi_data5[24],multi_data5} ;
//==2级加法
reg signed [26:0] add_level2_1 ;
reg signed [26:0] add_level2_2 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //(x(0)+x(8))*h(0)+(x(1)+x(7))*h(1)+(x(2)+x(6))*h(2)+(x(3)+x(5))*h(3)
if(!i_rst_n)
add_level2_1 <= 27'b0 ;
else
add_level2_1 <= add_level1_1+add_level1_2 ;
always@(posedge i_fpga_clk or negedge i_rst_n) //x(4)*h(4)
if(!i_rst_n)
add_level2_2 <= 27'b0 ;
else
add_level2_2 <= {add_level1_3[25],add_level1_3} ;
//-===3级
reg signed [27:0] add_level3_1 ;
always@(posedge i_fpga_clk or negedge i_rst_n)
if(!i_rst_n)
add_level3_1 <= 27'b0 ;
else
add_level3_1 <= add_level2_1+add_level2_2 ;
//================================================================================
// 5、output
//================================================================================
reg signed [22:0] r_filter_out ;
always@(posedge i_fpga_clk or negedge i_rst_n)
if(!i_rst_n)
r_filter_out <= 23'b0 ;
else
r_filter_out <= (add_level3_1[22:0]+{!add_level3_1[22],{14{add_level3_1[22]}}})>>15 ;//四舍五入输出
//================================================================================
// 6、output 取低8位
//================================================================================
assign o_filter_out = r_filter_out[7:0] ;
endmodule
**************************************总结************************************************
因为输入的数据是AD芯片采样的结果,该AD的采样精度是8位,所以本例使用8阶滤波器,设计的延时链、加法、乘法的程序都是根据8位来的。所以,如果数据输入是16位,或32位等等,需要改变的有设计滤波器的系数等等。
相应的延时链要多添加至reg signed [7:0] delay_pipeline16 ;
加法和乘法也要有相应的改变,举个例子,大家自行修改
always@(posedge i_fpga_clk or negedge i_rst_n) //x(0)+x(16)
if(!i_rst_n)
add_data1 <= 9'b0 ;
else
add_data1 <= i_filter_in + delay_pipeline16 ;
转载自:http://blog.sina.com.cn/s/blog_13b436b340102xfpw.html
关于截位问题:http://bbs.eccn.com/viewthread.php?tid=22773