实验一:决策树算法实验
实验一:决策树算法实验
【实验目的】
- 理解决策树算法原理,掌握决策树算法框架;
- 理解决策树学习算法的特征选择、树的生成和树的剪枝;
- 能根据不同的数据类型,选择不同的决策树算法;
- 针对特定应用场景及数据,能应用决策树算法解决实际问题。
【实验内容】
- 设计算法实现熵、经验条件熵、信息增益等方法。
- 针对给定的房贷数据集(数据集表格见附录1)实现ID3算法。
- 熟悉sklearn库中的决策树算法;
- 针对iris数据集,应用sklearn的决策树算法进行类别预测。
【实验报告要求】
- 对照实验内容,撰写实验过程、算法及测试结果;
- 代码规范化:命名规则、注释;
- 查阅文献,讨论ID3、5算法的应用场景;
- 查询文献,分析决策树剪枝策略。
【附录1】
年龄 | 有工作 | 有自己的房子 | 信贷情况 | 类别 | |
---|---|---|---|---|---|
0 | 青年 | 否 | 否 | 一般 | 否 |
1 | 青年 | 否 | 否 | 好 | 否 |
2 | 青年 | 是 | 否 | 好 | 是 |
3 | 青年 | 是 | 是 | 一般 | 是 |
4 | 青年 | 否 | 否 | 一般 | 否 |
5 | 中年 | 否 | 否 | 一般 | 否 |
6 | 中年 | 否 | 否 | 好 | 否 |
7 | 中年 | 是 | 是 | 好 | 是 |
8 | 中年 | 否 | 是 | 非常好 | 是 |
9 | 中年 | 否 | 是 | 非常好 | 是 |
10 | 老年 | 否 | 是 | 非常好 | 是 |
11 | 老年 | 否 | 是 | 好 | 是 |
12 | 老年 | 是 | 否 | 好 | 是 |
13 | 老年 | 是 | 否 | 非常好 | 是 |
14 | 老年 | 否 | 否 | 一般 | 否 |
实验过程与步骤:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math
from math import log
import pprint
def create_data(): datasets = [['青年', '否', '否', '一般', '否'], ['青年', '否', '否', '好', '否'], ['青年', '是', '否', '好', '是'], ['青年', '是', '是', '一般', '是'], ['青年', '否', '否', '一般', '否'], ['中年', '否', '否', '一般', '否'], ['中年', '否', '否', '好', '否'], ['中年', '是', '是', '好', '是'], ['中年', '否', '是', '非常好', '是'], ['中年', '否', '是', '非常好', '是'], ['老年', '否', '是', '非常好', '是'], ['老年', '否', '是', '好', '是'], ['老年', '是', '否', '好', '是'], ['老年', '是', '否', '非常好', '是'], ['老年', '否', '否', '一般', '否'], ] labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别'] # 返回数据集和每个维度的名称 return datasets, labels
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
train_data
运行结果:
# 熵 def calc_ent(datasets): data_length = len(datasets) label_count = {} for i in range(data_length): label = datasets[i][-1]
if label not in label_count: label_count[label] = 0 label_count[label] += 1 ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()]) return ent # def entropy(y): # """ # Entropy of a label sequence # """ # hist = np.bincount(y) # ps = hist / np.sum(hist) # return -np.sum([p * np.log2(p) for p in ps if p > 0]) # 经验条件熵 def cond_ent(datasets, axis=0): data_length = len(datasets) feature_sets = {} for i in range(data_length): feature = datasets[i][axis] if feature not in feature_sets: feature_sets[feature] = [] feature_sets[feature].append(datasets[i]) cond_ent = sum( [(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()]) return cond_ent # 信息增益 def info_gain(ent, cond_ent): return ent - cond_ent def info_gain_train(datasets): count = len(datasets[0]) - 1 ent = calc_ent(datasets) # ent = entropy(datasets) best_feature = [] for c in range(count): c_info_gain = info_gain(ent, cond_ent(datasets, axis=c)) best_feature.append((c, c_info_gain)) print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain)) # 比较大小 best_ = max(best_feature, key=lambda x: x[-1]) return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
info_gain_train(np.array(datasets))
运行结果:
利用ID3算法生成决策树
信息增益(ID3)
在信息论里熵叫作信息量,即熵是对不确定性的度量。从控制论的角度来看,应叫不确定性。熵越高,则能传输 越多的信息,熵越低,则意味着传输的信息越少,所以信息量=熵=不确定性,通俗易懂。
信息增益:分裂前的信息熵 减去 分裂后的信息熵 一个分裂导致的信息增益越大,代表这次分裂提升的纯度越高
# 定义节点类 二叉树 class Node: def __init__(self, root=True, label=None, feature_name=None, feature=None): self.root = root self.label = label self.feature_name = feature_name self.feature = feature self.tree = {} self.result = {'label:': self.label, 'feature': self.feature, 'tree': self.tree} def __repr__(self): return '{}'.format(self.result) def add_node(self, val, node): self.tree[val] = node def predict(self, features): if self.root is True: return self.label return self.tree[features[self.feature]].predict(features) class DTree: def __init__(self, epsilon=0.1): self.epsilon = epsilon self._tree = {} # 熵 @staticmethod def calc_ent(datasets): data_length = len(datasets) label_count = {} for i in range(data_length): label = datasets[i][-1] if label not in label_count: label_count[label] = 0 label_count[label] += 1 ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()]) return ent # 经验条件熵 def cond_ent(self, datasets, axis=0): data_length = len(datasets) feature_sets = {} for i in range(data_length): feature = datasets[i][axis] if feature not in feature_sets: feature_sets[feature] = [] feature_sets[feature].append(datasets[i]) cond_ent = sum([(len(p)/data_length)*self.calc_ent(p) for p in feature_sets.values()]) return cond_ent # 信息增益 @staticmethod def info_gain(ent, cond_ent): return ent - cond_ent def info_gain_train(self, datasets): count = len(datasets[0]) - 1 ent = self.calc_ent(datasets) best_feature = [] for c in range(count): c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c)) best_feature.append((c, c_info_gain)) # 比较大小 best_ = max(best_feature, key=lambda x: x[-1]) return best_ def train(self, train_data): """ input:数据集D(DataFrame格式),特征集A,阈值eta output:决策树T """ _, y_train, features = train_data.iloc[:, :-1], train_data.iloc[:, -1], train_data.columns[:-1] # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T if len(y_train.value_counts()) == 1: return Node(root=True, label=y_train.iloc[0]) # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T if len(features) == 0: return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0]) # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征 max_feature, max_info_gain = self.info_gain_train(np.array(train_data)) max_feature_name = features[max_feature] # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T if max_info_gain < self.epsilon: return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0]) # 5,构建Ag子集 node_tree = Node(root=False, feature_name=max_feature_name, feature=max_feature) feature_list = train_data[max_feature_name].value_counts().index for f in feature_list: sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1) # 6, 递归生成树 sub_tree = self.train(sub_train_df) node_tree.add_node(f, sub_tree) # pprint.pprint(node_tree.tree) return node_tree def fit(self, train_data): self._tree = self.train(train_data) return self._tree def predict(self, X_test): return self._tree.predict(X_test) datasets, labels = create_data() data_df = pd.DataFrame(datasets, columns=labels) dt = DTree() tree = dt.fit(data_df) tree
dt.predict(['老年', '否', '否', '一般'])
结果:
针对iris数据集,应用sklearn的决策树算法进行预测:
# data def create_data(): iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = [ 'sepal length', 'sepal width', 'petal length', 'petal width', 'label' ] data = np.array(df.iloc[:100, [0, 1, -1]]) # print(data) return data[:, :2], data[:, -1] X, y = create_data() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
from sklearn.tree import DecisionTreeClassifier from sklearn.tree import export_graphviz import graphviz clf = DecisionTreeClassifier() clf.fit(X_train, y_train,)
clf.score(X_test, y_test)
tree_pic = export_graphviz(clf, out_file="mytree.pdf") with open('mytree.pdf') as f: dot_graph = f.read()
graphviz.Source(dot_graph)
熟悉sklearn库中的决策树算法
Criterion这个参数正是用来决定不纯度的计算方法的。sklearn提供了两种选择:
其中t代表给定的节点,i代表标签的任意分类,P(i/t)代表标签分类i在节点t上所占的比例,注意,当使用信息熵时,sklearn实际计算的是基于信息熵的信息增益(Information Gain),即父节点的信息熵和子节点的信息熵之差。比起基尼系数,信息熵对不纯度更加敏感,对不纯度的惩罚最强。但是在实际使用中,信息熵和基尼系数的效果基本相同。信息熵的计算比基尼系数缓慢一些,因为基尼系数的计算不涉及对数。另外,因为信息熵对不纯度更加敏感,所以信息熵作为指标时,决策树的生长会更加“精细”,因此对于高维数据或者噪音很多的数据,信息熵很容易过拟合,基尼系数在这种情况下效果往往比较好。
from sklearn.tree import DecisionTreeClassifier from sklearn import preprocessing import numpy as np import pandas as pd from sklearn import tree import graphviz features = ["年龄", "有工作", "有自己的房子", "信贷情况"] X_train = pd.DataFrame([ ["青年", "否", "否", "一般"], ["青年", "否", "否", "好"], ["青年", "是", "否", "好"], ["青年", "是", "是", "一般"], ["青年", "否", "否", "一般"], ["中年", "否", "否", "一般"], ["中年", "否", "否", "好"], ["中年", "是", "是", "好"], ["中年", "否", "是", "非常好"], ["中年", "否", "是", "非常好"], ["老年", "否", "是", "非常好"], ["老年", "否", "是", "好"], ["老年", "是", "否", "好"], ["老年", "是", "否", "非常好"], ["老年", "否", "否", "一般"] ]) y_train = pd.DataFrame(["否", "否", "是", "是", "否", "否", "否", "是", "是", "是", "是", "是", "是", "是", "否"]) # 数据预处理 le_x = preprocessing.LabelEncoder() le_x.fit(np.unique(X_train)) X_train = X_train.apply(le_x.transform) le_y = preprocessing.LabelEncoder() le_y.fit(np.unique(y_train)) y_train = y_train.apply(le_y.transform) # 调用sklearn.DT建立训练模型 model_tree = DecisionTreeClassifier() model_tree.fit(X_train, y_train) # 可视化 dot_data = tree.export_graphviz(model_tree, out_file=None, feature_names=features, class_names=[str(k) for k in np.unique(y_train)], filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph
import numpy as np class LeastSqRTree: def __init__(self, train_X, y, epsilon): # 训练集特征值 self.x = train_X # 类别 self.y = y # 特征总数 self.feature_count = train_X.shape[1] # 损失阈值 self.epsilon = epsilon # 回归树 self.tree = None def _fit(self, x, y, feature_count, epsilon): # 选择最优切分点变量j与切分点s (j, s, minval, c1, c2) = self._divide(x, y, feature_count) # 初始化树 tree = {"feature": j, "value": x[s, j], "left": None, "right": None} if minval < self.epsilon or len(y[np.where(x[:, j] <= x[s, j])]) <= 1: tree["left"] = c1 else: tree["left"] = self._fit(x[np.where(x[:, j] <= x[s, j])], y[np.where(x[:, j] <= x[s, j])], self.feature_count, self.epsilon) if minval < self.epsilon or len(y[np.where(x[:, j] > s)]) <= 1: tree["right"] = c2 else: tree["right"] = self._fit(x[np.where(x[:, j] > x[s, j])], y[np.where(x[:, j] > x[s, j])], self.feature_count, self.epsilon) return tree def fit(self): self.tree = self._fit(self.x, self.y, self.feature_count, self.epsilon) @staticmethod def _divide(x, y, feature_count): # 初始化损失误差 cost = np.zeros((feature_count, len(x))) # 公式5.21 for i in range(feature_count): for k in range(len(x)): # k行i列的特征值 value = x[k, i] y1 = y[np.where(x[:, i] <= value)] c1 = np.mean(y1) y2 = y[np.where(x[:, i] > value)] c2 = np.mean(y2) y1[:] = y1[:] - c1 y2[:] = y2[:] - c2 cost[i, k] = np.sum(y1 * y1) + np.sum(y2 * y2) # 选取最优损失误差点 cost_index = np.where(cost == np.min(cost)) # 选取第几个特征值 j = cost_index[0][0] # 选取特征值的切分点 s = cost_index[1][0] # 求两个区域的均值c1,c2 c1 = np.mean(y[np.where(x[:, j] <= x[s, j])]) c2 = np.mean(y[np.where(x[:, j] > x[s, j])]) return j, s, cost[cost_index], c1, c2 train_X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).T y = np.array([4.50, 4.75, 4.91, 5.34, 5.80, 7.05, 7.90, 8.23, 8.70, 9.00]) model_tree = LeastSqRTree(train_X, y, .2) model_tree.fit() model_tree.tree
【实验小结】
讨论ID3,C4.5算法的应用场景
ID3 和 C4.5 比较
ID3(Iterative Dichotomiser 3,迭代二叉树 3 代)由 Ross Quinlan 于 1986 年提出。 1993 年,他对 ID3 进行改进设计出了 C4.5 算法。 我们已经知道 ID3 与 C4.5 的不同之处在于,ID3 根据信息增益选取特征构造决策树, 而 C4.5 则是以信息增益率为核心构造决策树。既然 C4.5 是在 ID3 的基础上改进得到的, 那么这两者的优缺点分别是什么? 使用信息增益会让 ID3 算法更偏向于选择值多的属性。信息增益反映给定一个条件后 不确定性减少的程度,必然是分得越细的数据集确定性更高,也就是信息熵越小,信息增益 越大。因此,在一定条件下,值多的属性具有更大的信息增益。而 C4.5 则使用信息增益率 选择属性。信息增益率通过引入一个被称作分裂信息(Split information)的项来惩罚取值较 多的属性,分裂信息用来衡量属性分裂数据的广度和均匀性。这样就改进了 ID3 偏向选择 值多属性的缺点。
相对于 ID3 只能处理离散数据,C4.5 还能对连续属性进行处理,具体步骤为:
1. 把需要处理的样本(对应根节点)或样本子集(对应子树)按照连续变量的大小从小到大进 行排序。 2. 假设该属性对应的不同的属性值一共有 N 个,那么总共有 N−1 个可能的候选分割阈值 点,每个候选的分割阈值点的值为上述排序后的属性值中两两前后连续元素的中点,根 据这个分割点把原来连续的属性分成 bool 属性。实际上可以不用检查所有 N−1 个分 割点。(连续属性值比较多的时候,由于需要排序和扫描,会使 C4.5 的性能有所下降。
————————————————
ID3算法应用场景:
它的基础理论清晰,算法比较简单,学习能力较强,适于处理大规模的学习问题,是数据挖掘和知识发现领域中的一个很好的范例,为后来各学者提出优化算法奠定了理论基础。ID3算法特别在机器学习、知识发现和数据挖掘等领域得到了极大发展。
C4.5算法应用场景:
C4.5算法具有条理清晰,能处理连续型属性,防止过拟合,准确率较高和适用范围广等优点,是一个很有实用价值的决策树算法,可以用来分类,也可以用来回归。C4.5算法在机器学习、知识发现、金融分析、遥感影像分类、生产制造、分子生物学和数据挖掘等领域得到广泛应用。
分析决策树剪枝策略
剪枝的目的在于:缓解决策树的"过拟合",降低模型复杂度,提高模型整体的学习效率
(决策树生成学习局部的模型,而决策树剪枝学习整体的模型)
基本策略:
预剪枝:是指在决策树生成过程中,对每一个结点在划分前进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分并将当前结点标记为叶子结点。
优点:降低了过拟合地风险,并显著减少了决策树地训练时间开销和测试时间开销。
缺点:有些分支地当前划分虽不能提升泛化性能、甚至可能导致泛化性能下降,但是在其基础上进行地后续划分却可能导致性能显著提高;
预剪枝基于'贪心'本质禁止这些分支展开,给预剪枝决策树带来了欠拟合的风险。
后剪枝:先从训练集生成一棵完整的决策树,然后自底向上地对非叶子结点进行考察,若将该结点对应地子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。
优点:一般情况下后剪枝决策树的欠拟合风险很小,泛化性能往往优于预剪枝决策树。
缺点:自底向上的注意考察,时间开销较高。
决策树优点:
- 决策树易于理解和实现. 人们在通过解释后都有能力去理解决策树所表达的意义。
- 对于决策树,数据的准备往往是简单或者是不必要的 . 其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。
- 能够同时处理数据型和常规型属性。 其他的技术往往要求数据属性的单一。
- 是一个白盒模型如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。
- 易于通过静态测试来对模型进行评测。 表示有可能测量该模型的可信度。
- 在相对短的时间内能够对大型数据源做出可行且效果良好的结果。
决策树缺点:
1:决策树算法学习者可以创建复杂的树,但是没有推广依据,这就是所谓的过拟合,为了避免这种问题,出现了剪枝的概念,即设置一个叶子结点所需要的最小数目或者设置树的最大深度2:决策树的结果可能是不稳定的,因为在数据中一个很小的变化可能导致生成一个完全不同的树,这个问题可以通过使用集成决策树来解决
3:众所周知,学习一恶搞最优决策树的问题是NP——得到几方面完全的优越性,甚至是一些简单的概念。因此,实际决策树学习算法是基于启发式算法,如贪婪算法,寻求在每个节点上的局部最优决策。这样的算法不能保证返回全局最优决策树。这可以减轻训练多棵树的合奏学习者,在那里的功能和样本随机抽样更换。
4:这里有一些概念是很难的理解的,因为决策树本身并不难很轻易的表达它们,比如说异或校验或复用的问题。
5:决策树学习者很可能在某些类占主导地位时创建有有偏异的树,因此建议用平衡的数据训练决策树
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了