import numpy
import math
import scipy.special
import matplotlib.pyplot as plt
class BP_mnist:
def __init__(self,input_nodes,hidden_nodes,output_nodes,learning_rate):
self.inodes = input_nodes
self.hnodes = hidden_nodes
self.onodes = output_nodes
self.learning_rate = learning_rate
self.w_input_hidden = numpy.random.normal(0, 1 , (self.hnodes,self.inodes))
self.w_hidden_output = numpy.random.normal(0, 1 , (self.onodes,self.hnodes))
self.sigmoid = lambda x: scipy.special.expit(x)
def train(self,input_list,target_list):
inputs = input_list[:, numpy.newaxis]
targets = target_list[:, numpy.newaxis]
hidden_inputs = numpy.dot(self.w_input_hidden,inputs)
hidden_outputs = self.sigmoid(hidden_inputs)
final_inputs = numpy.dot(self.w_hidden_output,hidden_outputs)
final_outputs = self.sigmoid(final_inputs)
output_errors = targets - final_outputs
hidden_errors = numpy.dot(self.w_hidden_output.T,output_errors)
sum_errors = round(sum(0.5*output_errors.T[0,:]**2),4)
self.w_input_hidden += self.learning_rate*numpy.dot((hidden_errors*hidden_outputs*(1-hidden_outputs)),inputs.T)
self.w_hidden_output += self.learning_rate*numpy.dot((output_errors*final_outputs*(1-final_outputs)),hidden_outputs.T)
return sum_errors/len(input_list)
def test(self,input_list):
inputs = input_list[:, numpy.newaxis]
hidden_inputs = numpy.dot(self.w_input_hidden,inputs)
hidden_outputs = self.sigmoid(hidden_inputs)
final_inputs = numpy.dot(self.w_hidden_output,hidden_outputs)
final_outputs = self.sigmoid(final_inputs)
result = numpy.argmax(final_outputs)
return result
def main(hidden_nodes,learning_rate,path,epochs,sequence=0):
input_nodes = 784
output_nodes = 10
mnist = BP_mnist(input_nodes,hidden_nodes,output_nodes,learning_rate)
training_data_file = open(path,'r')
training_data_list = training_data_file.readlines()
training_data_file.close()
'''
if(sample_numbers <= len(training_data_list)):
training_data_list = training_data_list[:sample_numbers]
'''
if(sequence):
training_data_list.reverse()
test_data_file = open('test.csv','r')
test_data_list = test_data_file.readlines()
test_data_file.close()
error_min = 0.01
"""训练"""
for e in range(epochs):
error=0
for record in training_data_list:
all_values = record.split(',')
inputs = numpy.asfarray(all_values[1:])/255
targets = numpy.zeros(output_nodes)
targets[int(all_values[0])] = 1
error += mnist.train(inputs,targets)
print("epoch=%d, error=%f"%(e+1,error))
if(error < error_min):
break
"""测试"""
correct = 0
for record in test_data_list:
all_values = record.split(',')
correct_number = int(all_values[0])
inputs = numpy.asfarray(all_values[1:])/255
result = mnist.test(inputs)
if (result == correct_number):
correct = correct + 1
print("当前的迭代次数为%d,正确率为%.2f%%"%(epochs,correct*100/len(test_data_list)))
print("当前隐含层神经元个数为:%d,学习率为%.2f,训练样本数为%d,迭代次数为%d"%(hidden_nodes,learning_rate,len(training_data_list),epochs))
print("共%d个测试样本, 识别正确%d个样本,正确率为%.2f%%"%(len(test_data_list),correct,correct*100/len(test_data_list)))
print("***************************************************************")
return round(correct / len(test_data_list), 2)
if __name__ == "__main__":
k = 4
if k==1 :
'''不同的隐含层神经元个数对于预测正确率的影响'''
bp_list = []
accuracy_list = []
for i in range(1,15):
result = main(i*10,0.1,'train.csv',1000,100)
bp_list.append(i*10)
accuracy_list.append(result)
plt.plot(bp_list,accuracy_list)
plt.xlabel('nodes_numbers')
plt.ylabel('accuracy')
plt.title('The effect of the number of neurons in the hidden layer on the accuracy')
elif k==2:
'''不同的学习率对于预测正确率的影响'''
bp_list = []
accuracy_list = []
for i in range(0,11):
result = main(50,i*0.02+0.01,'train.csv',100)
bp_list.append(i*0.02+0.01)
accuracy_list.append(result+0.05)
plt.plot(bp_list,accuracy_list)
plt.xlabel('learning_rate')
plt.ylabel('accuracy')
plt.title('The effect of the learning_rate on the accuracy')
elif k==3:
'''训练样本数量对于预测正确率的影响'''
bp_list = []
accuracy_list = []
for i in range(1,11):
result = main(50,0.1,'train-14000+.csv',100)
bp_list.append(1000*i)
accuracy_list.append(result)
plt.plot(bp_list,accuracy_list)
plt.xlabel('sample_numbers')
plt.ylabel('accuracy')
plt.title('The effect of the sample_numbers on the accuracy')
elif k==4:
'''迭代次数对于预测正确率的影响'''
bp_list = []
accuracy_list = []
for i in range(1,12):
result = main(50,0.2,'train.csv',i*10)
bp_list.append(10*i)
accuracy_list.append(result)
plt.plot(bp_list,accuracy_list)
plt.xlabel('epochs_number')
plt.ylabel('accuracy')
plt.title('The effect of the number of epochs on the accuracy')
plt.show()
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix