每日总结

机器学习决策树

决策树(decision tree):是一种基本的分类与回归方法

决策树通常有三个步骤:特征选择、决策树的生成、决策树的修剪。

使用sklearn构建决策树:例子:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd


def datasets_demo():
iris = load_iris()
print("鸢尾花数据集\n", iris)
print("查看数据集描述:\n", iris["DESCR"])
# print("查看特征值描述:\n", iris.feature_names)
# print("特征值:\n", iris.data)

# x_train, x_test, y_train, y_test=train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
# print(x_train, x_train.shape)
return None


def minmax_demo():
data = pd.read_csv("nsrxx1.csv")
print(data)

return None


if __name__ == "__main__":
minmax_demo()

 

 

 
posted @ 2021-10-18 16:21  chenghaixinag  阅读(78)  评论(0编辑  收藏  举报