每日总结

Pandas 数据清洗

Pandas 清洗空值:DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

例子:import pandas as pd

df = pd.read_csv('property-data.csv')

new_df = df.dropna()

print(new_df.to_string())

Pandas 清洗格式错误数据:

例子:

import pandas as pd

# 第三个日期格式错误
data = {
  "Date": ['2020/12/01', '2020/12/02' , '20201226'],
  "duration": [50, 40, 45]
}

df = pd.DataFrame(data, index = ["day1", "day2", "day3"])

df['Date'] = pd.to_datetime(df['Date'])

print(df.to_string())

Pandas 清洗重复数据:使用 duplicated()drop_duplicates() 方法

 

posted @   chenghaixinag  阅读(87)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 如何调用 DeepSeek 的自然语言处理 API 接口并集成到在线客服系统
· 【译】Visual Studio 中新的强大生产力特性
· 2025年我用 Compose 写了一个 Todo App
历史上的今天:
2020-10-04 每日总结11
点击右上角即可分享
微信分享提示