每日总结

Mapreduce实例——单表join

依赖:

<dependency>

      <groupId>org.apache.hadoop</groupId>

      <artifactId>hadoop-common</artifactId>

      <version>3.2.0</version>

    </dependency>

    <dependency>

      <groupId>org.apache.hadoop</groupId>

      <artifactId>hadoop-mapreduce-client-app</artifactId>

      <version>3.2.0</version>

    </dependency>

 

    <dependency>

      <groupId>org.apache.hadoop</groupId>

      <artifactId>hadoop-hdfs</artifactId>

      <version>3.2.0</version>

    </dependency>

    <dependency>

      <groupId>org.slf4j</groupId>

      <artifactId>slf4j-log4j12</artifactId>

      <version>1.7.30</version>

    </dependency>

    <dependency>

      <groupId>org.apache.hadoop</groupId>

      <artifactId>hadoop-client</artifactId>

      <version>3.2.0</version>

</dependency>

 

实验代码:

package   mapreduce;
import   java.io.IOException;
import   java.util.Iterator;
import   org.apache.hadoop.conf.Configuration;
import   org.apache.hadoop.fs.Path;
import   org.apache.hadoop.io.Text;
import   org.apache.hadoop.mapreduce.Job;
import   org.apache.hadoop.mapreduce.Mapper;
import   org.apache.hadoop.mapreduce.Reducer;
import   org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import   org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public   class   DanJoin {
    public static class Map extends Mapper<Object, Text, Text, Text> {
        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String line = value.toString();
            String[] arr = line.split("\t");
            String mapkey = arr[0];
            String mapvalue = arr[1];
            String relationtype = new String();
            relationtype = "1";
            context.write(new Text(mapkey), new Text(relationtype + "+" + mapvalue));
            //System.out.println(relationtype+"+"+mapvalue);
            relationtype = "2";
            context.write(new Text(mapvalue), new Text(relationtype + "+" + mapkey));
            //System.out.println(relationtype+"+"+mapvalue);
        }
    }

    public static class Reduce extends Reducer<Text, Text, Text, Text> {
        public void reduce(Text key, Iterable<Text> values, Context context)
                throws IOException, InterruptedException {
            int buyernum = 0;
            String[] buyer = new String[20];
            int friendsnum = 0;
            String[] friends = new String[20];
            Iterator ite = values.iterator();
            while (ite.hasNext()) {
                String record = ite.next().toString();
                int len = record.length();
                int i = 2;
                if (0 == len) {
                    continue;
                }
                char relationtype = record.charAt(0);
                if ('1' == relationtype) {
                    buyer[buyernum] = record.substring(i);
                    buyernum++;
                }
                if ('2' == relationtype) {
                    friends[friendsnum] = record.substring(i);
                    friendsnum++;
                }
            }
            if (0 != buyernum && 0 != friendsnum) {
                for (int m = 0; m < buyernum; m++) {
                    for (int n = 0; n < friendsnum; n++) {
                        if (buyer[m] != friends[n]) {
                            context.write(new Text(buyer[m]), new Text(friends[n]));
                        }
                    }
                }
            }
        }
    }

    public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();
        String[] otherArgs = new String[2];
        otherArgs[0] = "hdfs://hadoop102:8020/mymapreduce2/in/buyer1";
        otherArgs[1] = "hdfs://hadoop102:8020/mymapreduce2/out3";
        Job job = new Job(conf, "   Table   join");
        job.setJarByClass(DanJoin.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);

    }
}

 

 

 

posted @   chenghaixinag  阅读(27)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 如何调用 DeepSeek 的自然语言处理 API 接口并集成到在线客服系统
· 【译】Visual Studio 中新的强大生产力特性
· 2025年我用 Compose 写了一个 Todo App
历史上的今天:
2020-12-02 每日总结63
点击右上角即可分享
微信分享提示