每日总结

Mapreduce实例——排序

依赖:

<dependency>

      <groupId>org.apache.hadoop</groupId>

      <artifactId>hadoop-common</artifactId>

      <version>3.2.0</version>

    </dependency>

    <dependency>

      <groupId>org.apache.hadoop</groupId>

      <artifactId>hadoop-mapreduce-client-app</artifactId>

      <version>3.2.0</version>

    </dependency>

 

    <dependency>

      <groupId>org.apache.hadoop</groupId>

      <artifactId>hadoop-hdfs</artifactId>

      <version>3.2.0</version>

    </dependency>

    <dependency>

      <groupId>org.slf4j</groupId>

      <artifactId>slf4j-log4j12</artifactId>

      <version>1.7.30</version>

    </dependency>

    <dependency>

      <groupId>org.apache.hadoop</groupId>

      <artifactId>hadoop-client</artifactId>

      <version>3.2.0</version>

</dependency>

 

实验代码:

package  mapreduce;    
import  java.io.IOException;    
import  org.apache.hadoop.conf.Configuration;    
import  org.apache.hadoop.fs.Path;    
import  org.apache.hadoop.io.IntWritable;    
import  org.apache.hadoop.io.Text;    
import  org.apache.hadoop.mapreduce.Job;    
import  org.apache.hadoop.mapreduce.Mapper;    
import  org.apache.hadoop.mapreduce.Reducer;    
import  org.apache.hadoop.mapreduce.lib.input.FileInputFormat;    
import  org.apache.hadoop.mapreduce.lib.input.TextInputFormat;    
import  org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;    
import  org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;    
public  class  OneSort {
    public static class Map extends Mapper<Object, Text, IntWritable, Text> {
        private static Text goods = new Text();
        private static IntWritable num = new IntWritable();

        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            String line = value.toString();
            String arr[] = line.split("\t");
            num.set(Integer.parseInt(arr[1]));
            goods.set(arr[0]);
            context.write(num, goods);
        }
    }

    public static class Reduce extends Reducer<IntWritable, Text, IntWritable, Text> {
        private static IntWritable result = new IntWritable();

        public void reduce(IntWritable key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
            for (Text val : values) {
                context.write(key, val);
            }
        }
    }

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "OneSort");
        job.setJarByClass(OneSort.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(Text.class);
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);
        Path in = new Path("hdfs://hadoop102:8020/mymapreduce2/in/goods_visit1");
        Path out = new Path("hdfs://hadoop102:8020/mymapreduce2/out2");
        FileInputFormat.addInputPath(job, in);
        FileOutputFormat.setOutputPath(job, out);
        System.exit(job.waitForCompletion(true) ? 0 : 1);

    }
}

 

 

 

 

 

 

 

posted @   chenghaixinag  阅读(25)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 如何调用 DeepSeek 的自然语言处理 API 接口并集成到在线客服系统
· 【译】Visual Studio 中新的强大生产力特性
· 2025年我用 Compose 写了一个 Todo App
历史上的今天:
2020-12-01 每日总结62
点击右上角即可分享
微信分享提示