函数递归思想

目录

1. 递归是什么?

1.1 递归的思想:

1.2 递归的限制条件

2. 递归举例

2.1 举例1:求n的阶乘

2.2分析和代码实现

 2.3 举例2:顺序打印一个整数的每一位

2.4分析和代码实现

3. 递归与迭代

举例3:求第n个斐波那契数


1. 递归是什么?

递归是学习C语言函数绕不开的一个话题,那什么是递归呢?
递归其实是一种解决问题的方法,在C语言中,递归就是函数自己调用自己
写一个史上最简单的C语言递归代码:

#include <stdio.h>
int main()
{
    printf("hehe\n");
    main();//main函数中又调用了main函数
    return 0;
}

上述就是一个简单的递归程序,只不过上面的递归只是为了演示递归的基本形式,不是为了解决问
题,代码最终也会陷入死递归,导致栈溢出(Stack overflow)。

1.1 递归的思想:

把一个大型复杂问题层层转化为一个与原问题相似,但规模较小的子问题来求解;直到子问题不能再被拆分,递归就结束了。所以递归的思考方式就是把大事化小的过程。
递归中的递就是递推的意思,归就是回归的意思,接下来慢慢来体会。

1.2 递归的限制条件

递归在书写的时候,有2个必要条件:
• 递归存在限制条件,当满足这个限制条件的时候,递归便不再继续。
• 每次递归调用之后越来越接近这个限制条件。
在下面的例子中,我们逐步体会这2个限制条件。

2. 递归举例

2.1 举例1:求n的阶乘

题目:计算n的阶乘(不考虑溢出),n的阶乘就是1~n的数字累积相乘。

2.2分析和代码实现

我们知道n的阶乘的公式: n! = n ∗ (n − 1)!

当n==0 的时候,n的阶乘是1,其余n的阶乘都是可以通过公式计算。n的阶乘的递归公式如下:

那我们就可以写出函数Fact求n的阶乘,假设Fact(n)就是求n的阶乘,那么Fact(n-1)就是求n-1的阶
乘,函数如下:

int Fact(int n)
{
    if(n==0)
        return 1;
    else
        return n*Fact(n-1);
}

 2.3 举例2:顺序打印一个整数的每一位

输入一个整数m,按照顺序打印整数的每一位。
比如:
        输入:1234 输出:1 2 3 4
        输入:520 输出:5 2 0

2.4分析和代码实现

这个题目,放在我们面前,首先想到的是,怎么得到这个数的每一位呢?
如果n是一位数,n的每一位就是n自己
n是超过1位数的话,就得拆分每一位1234%10就能得到4,然后1234/10得到123,这就相当于去掉了4,然后继续对123%10,就得到了3,再除10去掉3,以此类推,不断的%10 和/10 操作,直到1234的每一位都得到;

void Print(int n)
{
    if(n>9)
    {
        Print(n/10);
    }
        printf("%d ", n%10);
}
int main()
{
    int m = 0;
    scanf("%d", &m);
    Print(m);
    return 0;
}

在这个解题的过程中,我们就是使用了大事化小的思路
把Print(1234) 打印1234每一位,拆解为首先Print(123)打印123的每一位,再打印得到的4
把Print(123) 打印123每一位,拆解为首先Print(12)打印12的每一位,再打印得到的3
直到Print打印的是一位数,直接打印就行。

3. 递归与迭代

递归是一种很好的编程技巧,但是和很多技巧一样,也是可能被误用的,就像举例1一样,看到推导的公式,很容易就被写成递归的形式。

Fact函数是可以产生正确的结果,但是在递归函数调用的过程中涉及一些运行时的开销。
在C语言中每一次函数调用,都需要为本次函数调用在内存的栈区,申请一块内存空间来保存函数调用期间的各种局部变量的值,这块空间被称为运行时堆栈,或者函数栈帧。
函数不返回,函数对应的栈帧空间就一直占用,所以如果函数调用中存在递归调用的话,每一次递归函数调用都会开辟属于自己的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间。
所以如果采用函数递归的方式完成代码,递归层次太深,就会浪费太多的栈帧空间,也可能引起栈溢出(stack overflow)的问题。

所以如果不想使用递归,就得想其他的办法,通常就是迭代的方式(通常就是循环的方式)。
比如:计算 n 的阶乘,也是可以产生1~n的数字累计乘在一起的。

int Fact(int n)
{
    int i = 0;
    int ret = 1;
    for(i=1; i<=n; i++)
    {
        ret *= i;
    }
    return ret;
}

上述代码是能够完成任务,并且效率是比递归的方式更好的。
事实上,我们看到的许多问题是以递归的形式进行解释的,这只是因为它比非递归的形式更加清晰,但是这些问题的迭代实现往往比递归实现效率更高。
当一个问题非常复杂,难以使用迭代的方式实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销。

举例3:求第n个斐波那契数

我们也能举出更加极端的例子,就像计算第n个斐波那契数,是不适合使用递归求解的,但是斐波那契数的问题通过是使用递归的形式描述的,如下:

int Fib(int n)
{
    if(n<=2)
        return 1;
    else
        return Fib(n-1)+Fib(n-2);
}

当我们n输入为50的时候,需要很长时间才能算出结果,这个计算所花费的时间,是我们很难接受的,这也说明递归的写法是非常低效的,那是为什么呢?

其实递归程序会不断的展开,在展开的过程中,我们很容易就能发现,在递归的过程中会有重复计
算,而且递归层次越深,冗余的计算就越多。所以斐波那契数的计算,使用递归是非常不明智的,我们就得想迭代的方式解决。

我们知道斐波那契数的前2个数都1,然后前2个数相加就是第3个数,那么我们从前往后,从小到大计算就行了。

int Fib(int n)
{
    int a = 1;
    int b = 1;
    int c = 1;
    while(n>2)
    {
        c = a+b;
        a = b;
        b = c;
        n--;
    }
    return c;
}

迭代的方式去实现这个代码,效率就要高出很多了。
有时候,递归虽好,但是也会引入一些问题,所以我们一定不要迷恋递归,适可而止就好。

posted @ 2024-10-12 22:21  写代码的大学生  阅读(14)  评论(0编辑  收藏  举报  来源