Day06-常用模块

一.re模块

一:什么是正则?

 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法。或者说:正则就是用来描述一类事物的规则。(在Python中)它内嵌在Python中,并通过 re 模块实现。正则表达式模式被编译成一系列的字节码,然后由用 C 编写的匹配引擎执行。

生活中处处都是正则:

   比如我们描述:4条腿

     你可能会想到的是四条腿的动物或者桌子,椅子等

    继续描述:4条腿,活的

        就只剩下四条腿的动物这一类了

二:常用匹配模式(元字符)

 

练习上面的模式

# =================================匹配模式=================================
#一对一的匹配
# 'hello'.replace(old,new)
# 'hello'.find('pattern')

#正则匹配
import re
#\w与\W
print(re.findall('\w','hello egon 123')) #['h', 'e', 'l', 'l', 'o', 'e', 'g', 'o', 'n', '1', '2', '3']
print(re.findall('\W','hello egon 123')) #[' ', ' ']

#\s与\S
print(re.findall('\s','hello  egon  123')) #[' ', ' ', ' ', ' ']
print(re.findall('\S','hello  egon  123')) #['h', 'e', 'l', 'l', 'o', 'e', 'g', 'o', 'n', '1', '2', '3']

#\d与\D
print(re.findall('\d','hello egon 123')) #['1', '2', '3']
print(re.findall('\D','hello egon 123')) #['h', 'e', 'l', 'l', 'o', ' ', 'e', 'g', 'o', 'n', ' ']

#\A与\D
print(re.findall('\Ahe','hello egon 123')) #['he'],\A==>^
print(re.findall('123\Z','hello egon 123')) #['he'],\Z==>$

#\n与\t
print(re.findall(r'\n','hello egon \n123')) #['\n']
print(re.findall(r'\t','hello egon\t123')) #['\n']

#^与$
print(re.findall('^h','hello egon 123')) #['h']
print(re.findall('3$','hello egon 123')) #['3']

# 重复匹配:| . | * | ? | .* | .*? | + | {n,m} |
#.
print(re.findall('a.b','a1b')) #['a1b']
print(re.findall('a.b','a\nb')) #[]
print(re.findall('a.b','a\nb',re.S)) #['a\nb']
print(re.findall('a.b','a\nb',re.DOTALL)) #['a\nb']同上一条意思一样

#*
print(re.findall('ab*','bbbbbbb')) #[]
print(re.findall('ab*','a')) #['a']
print(re.findall('ab*','abbbb')) #['abbbb']

#?
print(re.findall('ab?','a')) #['a']
print(re.findall('ab?','abbb')) #['ab']
#匹配所有包含小数在内的数字
print(re.findall('\d+\.?\d*',"asdfasdf123as1.13dfa12adsf1asdf3")) #['123', '1.13', '12', '1', '3']

#.*默认为贪婪匹配
print(re.findall('a.*b','a1b22222222b')) #['a1b22222222b']

#.*?为非贪婪匹配:推荐使用
print(re.findall('a.*?b','a1b22222222b')) #['a1b']

#+
print(re.findall('ab+','a')) #[]
print(re.findall('ab+','abbb')) #['abbb']

#{n,m}
print(re.findall('ab{2}','abbb')) #['abb']
print(re.findall('ab{2,4}','abbb')) #['abb']
print(re.findall('ab{1,}','abbb')) #'ab{1,}' ===> 'ab+'
print(re.findall('ab{0,}','abbb')) #'ab{0,}' ===> 'ab*'

#[]
print(re.findall('a[1*-]b','a1b a*b a-b')) #[]内的都为普通字符了,且如果-没有被转意的话,应该放到[]的开头或结尾
print(re.findall('a[^1*-]b','a1b a*b a-b a=b')) #[]内的^代表的意思是取反,所以结果为['a=b']
print(re.findall('a[0-9]b','a1b a*b a-b a=b')) #[]内的^代表的意思是取反,所以结果为['a=b']
print(re.findall('a[a-z]b','a1b a*b a-b a=b aeb')) #[]内的^代表的意思是取反,所以结果为['a=b']
print(re.findall('a[a-zA-Z]b','a1b a*b a-b a=b aeb aEb')) #[]内的^代表的意思是取反,所以结果为['a=b']

#\# print(re.findall('a\\c','a\c')) #对于正则来说a\\c确实可以匹配到a\c,但是在python解释器读取a\\c时,会发生转义,然后交给re去执行,所以抛出异常
print(re.findall(r'a\\c','a\c')) #r代表告诉解释器使用rawstring,即原生字符串,把我们正则内的所有符号都当普通字符处理,不要转义
print(re.findall('a\\\\c','a\c')) #同上面的意思一样,和上面的结果一样都是['a\\c']

#():分组
print(re.findall('ab+','ababab123')) #['ab', 'ab', 'ab']
print(re.findall('(ab)+123','ababab123')) #['ab'],匹配到末尾的ab123中的ab
print(re.findall('(?:ab)+123','ababab123')) #findall的结果不是匹配的全部内容,而是组内的内容,?:可以让结果为匹配的全部内容

#|
print(re.findall('compan(?:y|ies)','Too many companies have gone bankrupt, and the next one is my company'))

 二.time模块

在Python中,通常有这几种方式来表示时间:

  • 时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。
  • 格式化的时间字符串(Format String)
  • 结构化的时间(struct_time):struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天,夏令时)
import time
#--------------------------我们先以当前时间为准,让大家快速认识三种形式的时间
print(time.time()) # 时间戳:1496643819.5706267
print(time.localtime()) #本地时区的struct_time
print(time.gmtime())#UTC时区的struct_time
print(time.strftime('%Y-%m-%d %X'))#格式化的时间字符串:'2017-06-05 14:23:39'

其中计算机认识的时间只能是'时间戳'格式,而程序员可处理的或者说人类能看懂的时间有: '格式化的时间字符串','结构化的时间' ,于是有了下图的转换关系

print(time.mktime(time.localtime())) # 将结构化时间转换为时间戳
print(time.localtime(time.time())) # 将时间戳转换为结构化时间
print(time.strftime('%Y-%m-%d %X',time.localtime(time.time()))) # 将结构化时间转换为格式化时间
print(time.strptime(time.strftime('%Y-%m-%d %X',time.localtime(time.time())),'%Y-%m-%d %X')) # 将格式化时间转换为结构化时间
#在这个函数中,format默认为:"%a %b %d %H:%M:%S %Y"。

 

#--------------------------按图2转换时间
# asctime([t]) : 把一个表示时间的元组或者struct_time表示为这种形式:'Sun Jun 20 23:21:05 1993'。
# 如果没有参数,将会将time.localtime()作为参数传入。
print(time.asctime())#Sun Sep 11 00:43:43 2016

# ctime([secs]) : 把一个时间戳(按秒计算的浮点数)转化为time.asctime()的形式。如果参数未给或者为
# None的时候,将会默认time.time()为参数。它的作用相当于time.asctime(time.localtime(secs))。
print(time.ctime())  # Sun Sep 11 00:46:38 2016
print(time.ctime(time.time()))  # Sun Sep 11 00:46:38 2016
#--------------------------其他用法
time.sleep()
# 线程推ran迟指定的时间运行,单位为秒。

 三.random模块

import random 
print(random.random()) #(0,1)----float    随机取出大于0且小于1之间的小数
print(random.randint(1,4))#随机取出大于等于1且小于等于4之间的整数
print(random.randrange(1,4))#随机取出大于等于1且小于4之间的整数
print(random.choice([1,2,[45,36],{1,2,3}]))#随机取出列表里面的一个元素
print(random.sample([1,2,[45,36],{1,2,3}],3))#随机取出列表元素里面的任意2个组合
print(random.uniform(1,4))#随机取出大于1小于3的小数,如1.927109612082716 
l=[1,2,3,4,5,6,7]
random.shuffle(l) # 打乱l列表的顺序,相当于"洗牌"
print(l)

 示例:随机生成验证码

import random
def foo(n):
    res=''
    for i in range(n):
        num=str(random.randint(0,9))
        num2=chr(random.randint(97,122))
        num3=random.choice([num,num2])
        res+=num3
    return res
print(foo(5))

 四.os模块

os模块是与操作系统交互的一个接口

 

os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
os.chdir("dirname")  改变当前脚本工作目录;相当于shell下cd
os.curdir  返回当前目录: ('.')
os.pardir  获取当前目录的父目录字符串名:('..')
os.makedirs('dirname1/dirname2')    可生成多层递归目录
os.removedirs('dirname1')    若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
os.mkdir('dirname')    生成单级目录;相当于shell中mkdir dirname
os.rmdir('dirname')    删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
os.listdir('dirname')    列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
os.remove()  删除一个文件
os.rename("oldname","newname")  重命名文件/目录
os.stat('path/filename')  获取文件/目录信息
os.sep    输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/"
os.linesep    输出当前平台使用的行终止符,win下为"\t\n",Linux下为"\n"
os.pathsep    输出用于分割文件路径的字符串 win下为;,Linux下为:
os.name    输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
os.system("bash command")  运行shell命令,直接显示
os.environ  获取系统环境变量
os.path.abspath(path)  返回path规范化的绝对路径
os.path.split(path)  将path分割成目录和文件名二元组返回
os.path.dirname(path)  返回path的目录。其实就是os.path.split(path)的第一个元素
os.path.basename(path)  返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。即os.path.split(path)的第二个元素
os.path.exists(path)  如果path存在,返回True;如果path不存在,返回False
os.path.isabs(path)  如果path是绝对路径,返回True
os.path.isfile(path)  如果path是一个存在的文件,返回True。否则返回False
os.path.isdir(path)  如果path是一个存在的目录,则返回True。否则返回False
os.path.join(path1[, path2[, ...]])  将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
os.path.getatime(path)  返回path所指向的文件或者目录的最后存取时间
os.path.getmtime(path)  返回path所指向的文件或者目录的最后修改时间
os.path.getsize(path) 返回path的大小

 

在Linux和Mac平台上,该函数会原样返回path,在windows平台上会将路径中所有字符转换为小写,并将所有斜杠转换为饭斜杠。
>>> os.path.normcase('c:/windows\\system32\\')   
'c:\\windows\\system32\\'   
   

规范化路径,如..和/
>>> os.path.normpath('c://windows\\System32\\../Temp/')   
'c:\\windows\\Temp'   

>>> a='/Users/jieli/test1/\\\a1/\\\\aa.py/../..'
>>> print(os.path.normpath(a))
/Users/jieli/test1
os路径处理
#方式一:推荐使用
import os
#具体应用
import os,sys
possible_topdir = os.path.normpath(os.path.join(
    os.path.abspath(__file__),
    os.pardir, #上一级
    os.pardir,
    os.pardir
))
sys.path.insert(0,possible_topdir)


#方式二:不推荐使用
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

五.sys模块

sys.argv           命令行参数List,第一个元素是程序本身路径
sys.exit(n)        退出程序,正常退出时exit(0)
sys.version        获取Python解释程序的版本信息
sys.maxint         最大的Int值
sys.path           返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform       返回操作系统平台名称
# 进度条示例
import
sys,time for i in range(50): sys.stdout.write('%s\r' %('#'*i)) sys.stdout.flush() time.sleep(0.1) ''' 注意:在pycharm中执行无效,请到命令行中以脚本的方式执行 '''

六.shutil模块

高级的 文件、文件夹、压缩包 处理模块

shutil.copyfileobj(fsrc, fdst[, length])
将文件内容拷贝到另一个文件中

import shutil
shutil.copyfileobj(open(
'a.json','r'),open('c.json','w'))

shutil.copyfile(src, dst)
拷贝文件

shutil.copy('a.json','d.json')#目标文件无需存在

shutil.copymode(src, dst)
仅拷贝权限。内容、组、用户均不变

shutil.copymode('f1.log', 'f2.log') #目标文件必须存在

shutil.copystat(src, dst)
仅拷贝状态的信息,包括:mode bits, atime, mtime, flags

shutil.copystat('f1.log', 'f2.log') #目标文件必须存在

shutil.copy(src, dst)
拷贝文件和权限

 import shutil
 shutil.copy('f1.log', 'f2.log')

shutil.copy2(src, dst)
拷贝文件和状态信息

import shutil
shutil.copy2('f1.log', 'f2.log')

shutil.ignore_patterns(*patterns)
shutil.copytree(src, dst, symlinks=False, ignore=None)
递归的去拷贝文件夹

1 import shutil
2  
3 shutil.copytree('folder1', 'folder2', ignore=shutil.ignore_patterns('*.pyc', 'tmp*')) #目标目录不能存在,注意对folder2目录父级目录要有可写权限,ignore的意思是排除 
import shutil

shutil.copytree('f1', 'f2', symlinks=True, ignore=shutil.ignore_patterns('*.pyc', 'tmp*'))

'''
通常的拷贝都把软连接拷贝成硬链接,即对待软连接来说,创建新的文件
'''

拷贝软连接

shutil.rmtree(path[, ignore_errors[, onerror]])
递归的去删除文件

1 import shutil
2  
3 shutil.rmtree('folder1')

shutil.move(src, dst)
递归的去移动文件,它类似mv命令,其实就是重命名。

1 import shutil
2  
3 shutil.move('folder1', 'folder3')

shutil.make_archive(base_name, format,...)

创建压缩包并返回文件路径,例如:zip、tar

创建压缩包并返回文件路径,例如:zip、tar

  • base_name: 压缩包的文件名,也可以是压缩包的路径。只是文件名时,则保存至当前目录,否则保存至指定路径,
  • 如 data_bak                       =>保存至当前路径
  • 如:/tmp/data_bak =>保存至/tmp/
  • format: 压缩包种类,“zip”, “tar”, “bztar”,“gztar”
  • root_dir: 要压缩的文件夹路径(默认当前目录)
  • owner: 用户,默认当前用户
  • group: 组,默认当前组
  • logger: 用于记录日志,通常是logging.Logger对象
#将 /data 下的文件打包放置当前程序目录
import shutil
ret = shutil.make_archive("data_bak", 'gztar', root_dir='/data')
  
  
#将 /data下的文件打包放置 /tmp/目录
import shutil
ret = shutil.make_archive("/tmp/data_bak", 'gztar', root_dir='/data')

shutil 对压缩包的处理是调用 ZipFile 和 TarFile 两个模块来进行的,详细:

import zipfile

# 压缩
z = zipfile.ZipFile('laxi.zip', 'w')
z.write('a.log')
z.write('data.data')
z.close()

# 解压
z = zipfile.ZipFile('laxi.zip', 'r')
z.extractall(path='.')
z.close()

zipfile压缩解压缩
import tarfile

# 压缩
>>> t=tarfile.open('/tmp/egon.tar','w')
>>> t.add('/test1/a.py',arcname='a.bak')
>>> t.add('/test1/b.py',arcname='b.bak')
>>> t.close()


# 解压
>>> t=tarfile.open('/tmp/egon.tar','r')
>>> t.extractall('/egon')
>>> t.close()

tarfile压缩解压缩

七.json&pickle模块

之前我们学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval就不管用了,所以eval的重点还是通常用来执行一个字符串表达式,并返回表达式的值。

import json
x="[null,true,false,1]"
print(eval(x)) #报错,无法解析null类型,而json就可以
print(json.loads(x)) 

什么是序列化?

我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

为什么要序列化?

1:持久保存状态

需知一个软件/程序的执行就在处理一系列状态的变化,在编程语言中,'状态'会以各种各样有结构的数据类型(也可简单的理解为变量)的形式被保存在内存中。

内存是无法永久保存数据的,当程序运行了一段时间,我们断电或者重启程序,内存中关于这个程序的之前一段时间的数据(有结构)都被清空了。

在断电或重启程序之前将程序当前内存中所有的数据都保存下来(保存到文件中),以便于下次程序执行能够从文件中载入之前的数据,然后继续执行,这就是序列化。

具体的来说,你玩使命召唤闯到了第13关,你保存游戏状态,关机走人,下次再玩,还能从上次的位置开始继续闯关。或如,虚拟机状态的挂起等。

2:跨平台数据交互

序列化之后,不仅可以把序列化后的内容写入磁盘,还可以通过网络传输到别的机器上,如果收发的双方约定好实用一种序列化的格式,那么便打破了平台/语言差异化带来的限制,实现了跨平台数据交互。

反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

如何序列化之json和pickle:

json

如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。

JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:

#序列化的过程:dic---->res=json.dumps(dic)---->f.write(res)
import json
dic={
    'name':'jim',
    'age':'18',
}
res=json.dumps(dic)
print(res,type(res))
with open('aa.json','w')as f:
    f.write(res)
#反序列化的过程:res=f.read()---->res=json.loads(res)---->dic=res
import json
with open('aa.json','r')as f:
    res=json.loads(f.read())
    print(res,type(res))
    print(res['name'])
#json的便捷操作
#序列化过程
import json
dic={
    'name':'alex',
    'age':9000,
    'height':'150cm',
}
json.dump(dic,open('b.json','w'))

#反序列化
import json
res=json.load(open('b.json','r'))
print(res,type(res))

 

# 注意点
import
json #dct="{'1':111}"#json 不认单引号 #dct=str({"1":111})#报错,因为生成的数据还是单引号:{'one': 1} dct='{"1":"111"}' print(json.loads(dct)) #conclusion: # 无论数据是怎样创建的,只要满足json格式,就可以json.loads出来,不一定非要dumps的数据才能loads

 pickle

 

   

import pickle

dic={'name':'alex','age':13}

print(pickle.dumps(dic))
with open('a.pkl','wb') as f:
    f.write(pickle.dumps(dic))

with open('a.pkl','rb') as f:
    d=pickle.loads(f.read())
    print(d,type(d))



dic={'name':'alex','age':13}
pickle.dump(dic,open('b.pkl','wb'))
res=pickle.load(open('b.pkl','rb'))
print(res,type(res))


#
import json
import pickle
def func():
    print('from func')

json.dumps(func)# 报错,json不支持python的函数类型
f=pickle.dumps(func)
print(f) 

pickle.dump(func,open('c.pkl','wb'))
res=pickle.load(open('c.pkl','rb'))
print(res)
res()  # 在当前文件中,如果func函数存在,可以执行,不存在是报错,在其他文件中反序列化直接就会报错,如果存在func函数,执行结果是本文件中func函数的执行结果

  Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。

八.shelve模块

 shelve模块比pickle模块简单,只有一个open函数,返回类似字典的对象,可读可写;key必须为字符串,而值可以是python所支持的数据类型

import shelve

f=shelve.open(r'sheve.txt')
# f['stu1_info']={'name':'egon','age':18,'hobby':['piao','smoking','drinking']}
# f['stu2_info']={'name':'gangdan','age':53}
# f['school_info']={'website':'http://www.pypy.org','city':'beijing'}

print(f['stu1_info']['hobby'])
f.close()

九.xml模块

 

xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过,古时候,在json还没诞生的黑暗年代,大家只能选择用xml呀,至今很多传统公司如金融行业的很多系统的接口还主要是xml。

xml的格式如下,就是通过<>节点来区别数据结构的:

<?xml version="1.0"?>
<data>
    <country name="Liechtenstein">
        <rank updated="yes">2</rank>
        <year>2008</year>
        <gdppc>141100</gdppc>
        <neighbor name="Austria" direction="E"/>
        <neighbor name="Switzerland" direction="W"/>
    </country>
    <country name="Singapore">
        <rank updated="yes">5</rank>
        <year>2011</year>
        <gdppc>59900</gdppc>
        <neighbor name="Malaysia" direction="N"/>
    </country>
    <country name="Panama">
        <rank updated="yes">69</rank>
        <year>2011</year>
        <gdppc>13600</gdppc>
        <neighbor name="Costa Rica" direction="W"/>
        <neighbor name="Colombia" direction="E"/>
    </country>
</data>

xml协议在各个语言里的都 是支持的,在python中可以用以下模块操作xml:


import xml.etree.ElementTree as ET
tree = ET.parse("xmltest.xml")
root = tree.getroot()
# print(root.iter('year')) #全文搜索
# print(root.find('country')) #在root的子节点找,只找一个
# print(root.findall('country')) #在root的子节点找,找所有

 

import xml.etree.ElementTree as ET
 
tree = ET.parse("xmltest.xml")
root = tree.getroot()
print(root.tag)
 
#遍历xml文档
for child in root:
    print('========>',child.tag,child.attrib,child.attrib['name'])
    for i in child:
        print(i.tag,i.attrib,i.text)
 
#只遍历year 节点
for node in root.iter('year'):
    print(node.tag,node.text)
#---------------------------------------

import xml.etree.ElementTree as ET
 
tree = ET.parse("xmltest.xml")
root = tree.getroot()
 
#修改
for node in root.iter('year'):
    new_year=int(node.text)+1
    node.text=str(new_year)
    node.set('updated','yes')
    node.set('version','1.0')
tree.write('test.xml')
 
 
#删除node
for country in root.findall('country'):
   rank = int(country.find('rank').text)
   if rank > 50:
     root.remove(country)
 
tree.write('output.xml')
#在country内添加(append)节点year2
import xml.etree.ElementTree as ET
tree = ET.parse("a.xml")
root=tree.getroot()
for country in root.findall('country'):
    for year in country.findall('year'):
        if int(year.text) > 2000:
            year2=ET.Element('year2')
            year2.text='新年'
            year2.attrib={'update':'yes'}
            country.append(year2) #往country节点下添加子节点

tree.write('a.xml.swap')

自己创建xml文档:

import xml.etree.ElementTree as ET
 
 
new_xml = ET.Element("namelist")
name = ET.SubElement(new_xml,"name",attrib={"enrolled":"yes"})
age = ET.SubElement(name,"age",attrib={"checked":"no"})
sex = ET.SubElement(name,"sex")
sex.text = '33'
name2 = ET.SubElement(new_xml,"name",attrib={"enrolled":"no"})
age = ET.SubElement(name2,"age")
age.text = '19'
 
et = ET.ElementTree(new_xml) #生成文档对象
et.write("test.xml", encoding="utf-8",xml_declaration=True)
 
ET.dump(new_xml) #打印生成的格式

 十.hashlib模块

hash:一种算法 ,3.x里代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法
三个特点:
1.内容相同则hash运算结果相同,内容稍微改变则hash值则变
2.不可逆推
3.相同算法:无论校验多长的数据,得到的哈希值长度固定。

import hashlib
 
m=hashlib.md5()# m=hashlib.sha256()
 
m.update('hello'.encode('utf8'))
print(m.hexdigest())  #5d41402abc4b2a76b9719d911017c592
 
m.update('alvin'.encode('utf8'))
 
print(m.hexdigest())  #92a7e713c30abbb0319fa07da2a5c4af
 
m2=hashlib.md5()
m2.update('helloalvin'.encode('utf8'))
print(m2.hexdigest()) #92a7e713c30abbb0319fa07da2a5c4af

'''
注意:把一段很长的数据update多次,与一次update这段长数据,得到的结果一样
但是update多次为校验大文件提供了可能。
'''

以上加密算法虽然依然非常厉害,但时候存在缺陷,即:通过撞库可以反解。所以,有必要对加密算法中添加自定义key再来做加密。

import hashlib
 
# ######## 256 ########
 
hash = hashlib.sha256('898oaFs09f'.encode('utf8'))
hash.update('alvin'.encode('utf8'))
print (hash.hexdigest())#e79e68f070cdedcfe63eaf1a2e92c83b4cfb1b5c6bc452d214c1b7e77cdfd1c7

模拟撞库破解密码

import hashlib
passwds=[
    'alex3714',
    'alex1313',
    'alex94139413',
    'alex123456',
    '123456alex',
    'a123lex',
    ]
def make_passwd_dic(passwds):
    dic={}
    for passwd in passwds:
        m=hashlib.md5()
        m.update(passwd.encode('utf-8'))
        dic[passwd]=m.hexdigest()
    return dic

def break_code(cryptograph,passwd_dic):
    for k,v in passwd_dic.items():
        if v == cryptograph:
            print('密码是===>\033[46m%s\033[0m' %k)

cryptograph='aee949757a2e698417463d47acac93df'
break_code(cryptograph,make_passwd_dic(passwds))

python 还有一个 hmac 模块,它内部对我们创建 key 和 内容 进行进一步的处理然后再加密:

1 import hmac
2 h = hmac.new('alvin'.encode('utf8'))
3 h.update('hello'.encode('utf8'))
4 print (h.hexdigest())#320df9832eab4c038b6c1d7ed73a5940

十一.subprocess模块

import  subprocess

'''
sh-3.2# ls /Users/egon/Desktop |grep txt$
mysql.txt
tt.txt
事物.txt
'''

res1=subprocess.Popen('ls /Users/jieli/Desktop',shell=True,stdout=subprocess.PIPE)
res=subprocess.Popen('grep txt$',shell=True,stdin=res1.stdout,
                 stdout=subprocess.PIPE)

print(res.stdout.read().decode('utf-8'))


#等同于上面,但是上面的优势在于,一个数据流可以和另外一个数据流交互,可以通过爬虫得到结果然后交给grep
res1=subprocess.Popen('ls /Users/jieli/Desktop |grep txt$',shell=True,stdout=subprocess.PIPE)
print(res1.stdout.read().decode('utf-8'))


#windows下:
# dir | findstr 'test*'
# dir | findstr 'txt$'
import subprocess
res1=subprocess.Popen(r'dir C:\Users\Administrator\PycharmProjects\test\函数备课',shell=True,stdout=subprocess.PIPE)
res=subprocess.Popen('findstr test*',shell=True,stdin=res1.stdout,
                 stdout=subprocess.PIPE)

print(res.stdout.read().decode('gbk')) #subprocess使用当前系统默认编码,得到结果为bytes类型,在windows下需要用gbk解码

十二.logging模块

用于便捷记录日志且线程安全的模块

import logging
'''
一:如果不指定filename,则默认打印到终端
二:指定日志级别:
    指定方式:
        1:level=10
        2:level=logging.ERROR

    日志级别种类:
        CRITICAL = 50
        FATAL = CRITICAL
        ERROR = 40
        WARNING = 30
        WARN = WARNING
        INFO = 20
        DEBUG = 10
        NOTSET = 0

三:指定日志级别为ERROR,则只有ERROR及其以上级别的日志会被打印
'''


logging.basicConfig(filename='access.log',
                    format='%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S %p',
                    level=10)

logging.debug('debug')
logging.info('info')
logging.warning('warning')
logging.error('error')
logging.critical('critical')
logging.log(10,'log') #如果level=40,则只有logging.critical和loggin.error的日志会被打印

可在logging.basicConfig()函数中通过具体参数来更改logging模块默认行为,可用参数有
filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
format:指定handler使用的日志显示格式。 
datefmt:指定日期时间格式。 
level:设置rootlogger(后边会讲解具体概念)的日志级别 
stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件,默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略

日志格式

%(name)s

Logger的名字,并非用户名,详细查看

%(levelno)s

数字形式的日志级别

%(levelname)s

文本形式的日志级别

%(pathname)s

调用日志输出函数的模块的完整路径名,可能没有

%(filename)s

调用日志输出函数的模块的文件名

%(module)s

调用日志输出函数的模块名

%(funcName)s

调用日志输出函数的函数名

%(lineno)d

调用日志输出函数的语句所在的代码行

%(created)f

当前时间,用UNIX标准的表示时间的浮 点数表示

%(relativeCreated)d

输出日志信息时的,自Logger创建以 来的毫秒数

%(asctime)s

字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒

%(thread)d

线程ID。可能没有

%(threadName)s

线程名。可能没有

%(process)d

进程ID。可能没有

%(message)s

用户输出的消息

十三.configparser模块

配置文件如下:

[section1]
k1 = v1
k2:v2
user=egon
age=18
is_admin=true
salary=31

[section2]
k1 = v1

 

读取

import configparser

config=configparser.ConfigParser()
config.read('a.cfg')

#查看所有的标题
res=config.sections() #['section1', 'section2']
print(res)

#查看标题section1下所有key=value的key
options=config.options('section1')
print(options) #['k1', 'k2', 'user', 'age', 'is_admin', 'salary']

#查看标题section1下所有key=value的(key,value)格式
item_list=config.items('section1')
print(item_list) #[('k1', 'v1'), ('k2', 'v2'), ('user', 'egon'), ('age', '18'), ('is_admin', 'true'), ('salary', '31')]

#查看标题section1下user的值=>字符串格式
val=config.get('section1','user')
print(val) #egon

#查看标题section1下age的值=>整数格式
val1=config.getint('section1','age')
print(val1) #18

#查看标题section1下is_admin的值=>布尔值格式
val2=config.getboolean('section1','is_admin')
print(val2) #True

#查看标题section1下salary的值=>浮点型格式
val3=config.getfloat('section1','salary')
print(val3) #31.0

改写

import configparser

config=configparser.ConfigParser()
config.read('a.cfg')


#删除整个标题section2
config.remove_section('section2')

#删除标题section1下的某个k1和k2
config.remove_option('section1','k1')
config.remove_option('section1','k2')

#判断是否存在某个标题
print(config.has_section('section1'))

#判断标题section1下是否有user
print(config.has_option('section1','user'))


#添加一个标题
config.add_section('egon')

#在标题egon下添加name=egon,age=18的配置
config.set('egon','name','egon')
config.set('egon','age',18) #报错,必须是字符串


#最后将修改的内容写入文件,完成最终的修改
config.write(open('a.cfg','w'))

==============》更详细如下

好多软件的常见文档格式如下,文件名为test.ini:

[DEFAULT]
ServerAliveInterval = 45
Compression = yes
CompressionLevel = 9
ForwardX11 = yes
  
[bitbucket.org]
User = hg
  
[topsecret.server.com]
Port = 50022
ForwardX11 = no

php.ini文件的格式也是同样的

[PHP]
engine = On
short_open_tag = Off
asp_tags = Off
precision = 14
output_buffering = 4096
zlib.output_compression = Off
implicit_flush = Off
unserialize_callback_func =
serialize_precision = 17
disable_functions =
disable_classes =
zend.enable_gc = On
expose_php = On
max_execution_time = 30
max_input_time = 60
memory_limit = 128M
error_reporting = E_ALL & ~E_DEPRECATED & ~E_STRICT
display_errors = Off
display_startup_errors = Off
log_errors = On
log_errors_max_len = 1024
ignore_repeated_errors = Off
ignore_repeated_source = Off
report_memleaks = On
track_errors = Off
html_errors = On
variables_order = "GPCS"
request_order = "GP"
register_argc_argv = Off
auto_globals_jit = On
post_max_size = 8M
auto_prepend_file =
auto_append_file =
default_mimetype = "text/html"
doc_root =
user_dir =
enable_dl = Off
file_uploads = On
upload_max_filesize = 2M
max_file_uploads = 20
allow_url_fopen = On
allow_url_include = Off
default_socket_timeout = 60
[CLI Server]
cli_server.color = On
[Date]
[filter]
[iconv]
[intl]
[sqlite]
[sqlite3]
[Pcre]
[Pdo]
[Pdo_mysql]
pdo_mysql.cache_size = 2000
pdo_mysql.default_socket=
[Phar]
[mail function]
SMTP = localhost
smtp_port = 25
sendmail_path = /usr/sbin/sendmail -t -i
mail.add_x_header = On
[SQL]
sql.safe_mode = Off
[ODBC]
odbc.allow_persistent = On
odbc.check_persistent = On
odbc.max_persistent = -1
odbc.max_links = -1
odbc.defaultlrl = 4096
odbc.defaultbinmode = 1
[Interbase]
ibase.allow_persistent = 1
ibase.max_persistent = -1
ibase.max_links = -1
ibase.timestampformat = "%Y-%m-%d %H:%M:%S"
ibase.dateformat = "%Y-%m-%d"
ibase.timeformat = "%H:%M:%S"
[MySQL]
mysql.allow_local_infile = On
mysql.allow_persistent = On
mysql.cache_size = 2000
mysql.max_persistent = -1
mysql.max_links = -1
mysql.default_port =
mysql.default_socket =
mysql.default_host =
mysql.default_user =
mysql.default_password =
mysql.connect_timeout = 60
mysql.trace_mode = Off
[MySQLi]
mysqli.max_persistent = -1
mysqli.allow_persistent = On
mysqli.max_links = -1
mysqli.cache_size = 2000
mysqli.default_port = 3306
mysqli.default_socket =
mysqli.default_host =
mysqli.default_user =
mysqli.default_pw =
mysqli.reconnect = Off
[mysqlnd]
mysqlnd.collect_statistics = On
mysqlnd.collect_memory_statistics = Off
[OCI8]
[PostgreSQL]
pgsql.allow_persistent = On
pgsql.auto_reset_persistent = Off
pgsql.max_persistent = -1
pgsql.max_links = -1
pgsql.ignore_notice = 0
pgsql.log_notice = 0
[Sybase-CT]
sybct.allow_persistent = On
sybct.max_persistent = -1
sybct.max_links = -1
sybct.min_server_severity = 10
sybct.min_client_severity = 10
[bcmath]
bcmath.scale = 0
[browscap]
[Session]
session.save_handler = files
session.use_cookies = 1
session.use_only_cookies = 1
session.name = PHPSESSID
session.auto_start = 0
session.cookie_lifetime = 0
session.cookie_path = /
session.cookie_domain =
session.cookie_httponly =
session.serialize_handler = php
session.gc_probability = 1
session.gc_divisor = 1000
session.gc_maxlifetime = 1440
session.bug_compat_42 = Off
session.bug_compat_warn = Off
session.referer_check =
session.cache_limiter = nocache
session.cache_expire = 180
session.use_trans_sid = 0
session.hash_function = 0
session.hash_bits_per_character = 5
url_rewriter.tags = "a=href,area=href,frame=src,input=src,form=fakeentry"
[MSSQL]
mssql.allow_persistent = On
mssql.max_persistent = -1
mssql.max_links = -1
mssql.min_error_severity = 10
mssql.min_message_severity = 10
mssql.compatability_mode = Off
mssql.secure_connection = Off
[Assertion]
[mbstring]
[gd]
[exif]
[Tidy]
tidy.clean_output = Off
[soap]
soap.wsdl_cache_enabled=1
soap.wsdl_cache_dir="/tmp"
soap.wsdl_cache_ttl=86400
soap.wsdl_cache_limit = 5
[sysvshm]
[ldap]
ldap.max_links = -1
[mcrypt]
[dba]

1 获取所有节点

import configparser
config=configparser.ConfigParser()
config.read('test.ini')
res=config.sections()
print(res)

'''
打印结果:
['bitbucket.org', 'topsecret.server.com']
'''

2 获取指定节点下所有的键值对

import configparser
config=configparser.ConfigParser()
config.read('test.ini',encoding='utf-8')
res=config.items('bitbucket.org')
print(res)

'''
打印结果:(包含DEFAULT以及bitbucket.org这俩标题下所有的items)
[('serveraliveinterval', '45'), ('compression', 'yes'), ('compressionlevel', '9'), ('forwardx11', 'yes'), ('user', 'hg')]
'''

3 获取指定节点下所有的建

import configparser
config=configparser.ConfigParser()
config.read('test.ini',encoding='utf-8')
res=config.options('bitbucket.org')
print(res)

'''
打印结果:(包含DEFAULT以及bitbucket.org这俩标题下所有的键)
['user', 'serveraliveinterval', 'compression', 'compressionlevel', 'forwardx11']'''

4 获取指定节点下指定key的值

import configparser
config=configparser.ConfigParser()
config.read('test.ini',encoding='utf-8')
res1=config.get('bitbucket.org','user')

res2=config.getint('topsecret.server.com','port')
res3=config.getfloat('topsecret.server.com','port')
res4=config.getboolean('topsecret.server.com','ForwardX11')

print(res1)
print(res2)
print(res3)
print(res4)

'''
打印结果:
hg
50022.0
False
'''

5 检查、删除、添加节点

import configparser
config=configparser.ConfigParser()
config.read('test.ini',encoding='utf-8')

#检查
has_sec=config.has_section('bitbucket.org')
print(has_sec) #打印True

#添加节点
config.add_section('egon') #已经存在则报错
config['egon']['username']='gangdan'
config['egon']['age']='18'
config.write(open('test.ini','w'))

#删除节点
config.remove_section('egon')
config.write(open('test.ini','w'))

6 检查、删除、设置指定组内的键值对

import configparser
config=configparser.ConfigParser()
config.read('test.ini',encoding='utf-8')

#检查
has_sec=config.has_option('bitbucket.org','user') #bitbucket.org下有一个键user
print(has_sec) #打印True

#删除
config.remove_option('DEFAULT','forwardx11')
config.write(open('test.ini','w'))

#设置
config.set('bitbucket.org','user','gangdang')
config.write(open('test.ini','w'))

基于上面的方法生成一个ini文件

import configparser
config=configparser.ConfigParser()
config['DEFAULT']={'serveraliveinterval':'45',
                   'compression':'yes',
                    'compressionlevel':'9'
}
config.add_section('bitbucket.org')
config['bitbucket.org']['user']='jim'
config['topsecret.server.com']={}
topsecret=config['topsecret.server.com']
topsecret['host port']='50022'
topsecret['forwardx11']='no'
config['DEFAULT']['forwardx11']='yes'
config.write(open('example.ini','w'))

 

posted on 2017-06-03 11:53  冷无颜  阅读(141)  评论(0编辑  收藏  举报