频谱与功率谱的区别

最近听老师讲课,提到功率谱是把信号的自相关作FFT,我才发现自己概念上的一个误区:我一直以为功率谱和频谱是同一个概念,以为都是直接作FFT就可以了。 那么功率谱:信号先自相关再作FFT       频谱:信号直接作FFT。 这两者从公式上看是不同的,那么从物理意义上呢?哪个表示信号在各个频率上的能量?那另一个又是什么呢?

功率谱指的是信号在每个频率分量上的功率,频谱其实是一个幅度谱,只信号在各个分量上的幅度值。因为通信中一般对于信号的分析都是把信号看作电压值。所以功率就是电压的平方再除以电阻值。为了分析简单归一化,令R=1,这时候功率谱就是频谱模的平方了。模也就是实部分量和虚部分量平方和的开方。

频谱是个很不严格的东西,常常指信号的Fourier变换, 是一个时间平均(time average)概念 功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。有两个重要区别:       1。功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列)       2。功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛; 而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。

频谱是信号的傅立叶变换。它描述了信号在各个频率上的分布大小。频谱的平方(当能量有限,平均功率为0时称为能量谱)描述了信号能量在各个频率上的分布大小。
功率谱是针对随机信号而言,是随机信号的自相关函数的离散傅立叶变换(注意自相关函数是确定性序列,离散信号本身是不存在离散傅立叶变换的)。它描述了随机信号的功率在各个频率上的分布大小,而不是能量分布大小。
功率谱可以从两方面来定义,一个是自相关函数的傅立叶变换,另一个是时域信号傅氏变换模平方然后除以时间长度。第一种定义就是常说的维纳辛钦定理,而第二种其实从能量谱密度来的。根据parseval定理,信号傅氏变换模平方被定义为能量谱,即单位频率范围内包含的信号能量。自然,能量跟功率有一个时间平均的关系

转自:http://hi.baidu.com/bennett1056/blog/item/a68c273d00a49ef6828b1392.html

 

posted on 2012-05-08 13:33  chenfengfei  阅读(7027)  评论(0编辑  收藏  举报

导航