吴恩达机器学习作业 2 - 线性回归
机器学习作业 1 - 线性回归
1.单变量线性回归
导包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
导入数据集。提醒大家:一定要把数据文件ex1data1.txt放在和程序同一个文件夹里,否则需要使用绝对路径访问文件
path = 'ex1data1.txt'
data = pd.read_csv(path, header=None, names=['Population', 'Profit'])
data.head() #预览数据
Population | Profit | |
---|---|---|
0 | 6.1101 | 17.5920 |
1 | 5.5277 | 9.1302 |
2 | 8.5186 | 13.6620 |
3 | 7.0032 | 11.8540 |
4 | 5.8598 | 6.8233 |
data.describe()
Population | Profit | |
---|---|---|
count | 97.000000 | 97.000000 |
mean | 8.159800 | 5.839135 |
std | 3.869884 | 5.510262 |
min | 5.026900 | -2.680700 |
25% | 5.707700 | 1.986900 |
50% | 6.589400 | 4.562300 |
75% | 8.578100 | 7.046700 |
max | 22.203000 | 24.147000 |
数据可视化,绘制散点图
data.plot(kind='scatter', x='Population', y='Profit', figsize=(12,8))
plt.show()
现在让我们使用梯度下降来实现线性回归,以最小化成本函数。 以下代码示例中实现的方程在“练习”文件夹中的“ex1.pdf”中有详细说明。
首先,我们将创建一个以参数θ为特征函数的代价函数
J
(
θ
)
=
1
2
m
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
2
J\left( \theta \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}}
J(θ)=2m1i=1∑m(hθ(x(i))−y(i))2
其中:
h
θ
(
x
)
=
θ
T
X
=
θ
0
x
0
+
θ
1
x
1
+
θ
2
x
2
+
.
.
.
+
θ
n
x
n
{{h}_{\theta }}\left( x \right)={{\theta }^{T}}X={{\theta }_{0}}{{x}_{0}}+{{\theta }_{1}}{{x}_{1}}+{{\theta }_{2}}{{x}_{2}}+...+{{\theta }_{n}}{{x}_{n}}
hθ(x)=θTX=θ0x0+θ1x1+θ2x2+...+θnxn
def computeCost(X, y, theta):
# your code here (appro ~ 2 lines)
inner = np.power(((X*theta.T)-y),2)
return np.sum(inner)/(2*len(X))
让我们在训练集中添加一列,以便我们可以使用向量化的解决方案来计算代价和梯度。
data.insert(0, 'Ones', 1)
现在我们来做一些变量初始化。
# set X (training data) and y (target variable)
cols = data.shape[1]
X = data.iloc[:,0:cols-1]#X是所有行,去掉最后一列
y = data.iloc[:,cols-1:cols]#X是所有行,最后一列
观察下 X (训练集) and y (目标变量)是否正确.
X.head()#head()是观察前5行
Ones | Population | |
---|---|---|
0 | 1 | 6.1101 |
1 | 1 | 5.5277 |
2 | 1 | 8.5186 |
3 | 1 | 7.0032 |
4 | 1 | 5.8598 |
y.head()
Profit | |
---|---|
0 | 17.5920 |
1 | 9.1302 |
2 | 13.6620 |
3 | 11.8540 |
4 | 6.8233 |
代价函数是应该是numpy矩阵,所以我们需要转换X和Y,然后才能使用它们。 我们还需要初始化theta,即把theta所有元素都设置为0.
X = np.matrix(X.values)
y = np.matrix(y.values)
# your code here (appro ~ 1 lines)
theta = np.matrix(np.array([0,0]))
theta 是一个(1,2)矩阵
theta
matrix([[0, 0]])
看下维度
X.shape, theta.shape, y.shape
((97, 2), (1, 2), (97, 1))
计算代价函数 (theta初始值为0).
computeCost(X, y, theta)
32.072733877455676
2.batch gradient decent(批量梯度下降)
θ j : = θ j − α ∂ ∂ θ j J ( θ ) {{\theta }_{j}}:={{\theta }_{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( \theta \right) θj:=θj−α∂θj∂J(θ)
def gradientDescent(X, y, theta, alpha, iters):
temp = np.matrix(np.zeros(theta.shape))
parameters = int(theta.ravel().shape[1])
cost = np.zeros(iters)
for i in range(iters):
# your code here (appro ~ 1 lines)
error = (X * theta.T) - y
for j in range(parameters):
# your code here (appro ~ 2 lines)
term = np.multiply(error, X[:,j])
temp[0,j] = theta[0,j] - ((alpha / len(X)) * np.sum(term))
# your code here (appro ~ 2 lines)
theta = temp
cost[i] = computeCost(X, y, theta)
return theta, cost
初始化一些附加变量 - 学习速率α和要执行的迭代次数。
alpha = 0.01
iters = 1000
现在让我们运行梯度下降算法来将我们的参数θ适合于训练集。
g, cost = gradientDescent(X, y, theta, alpha, iters)
g
matrix([[-3.24140214, 1.1272942 ]])
最后,我们可以使用我们拟合的参数计算训练模型的代价函数(误差)。
computeCost(X, y, g)
4.515955503078912
现在我们来绘制线性模型以及数据,直观地看出它的拟合。
x = np.linspace(data.Population.min(), data.Population.max(), 100)
f = g[0, 0] + (g[0, 1] * x)
fig, ax = plt.subplots(figsize=(12,8))
ax.plot(x, f, 'r', label='Prediction')
ax.scatter(data.Population, data.Profit, label='Traning Data')
ax.legend(loc=2)
ax.set_xlabel('Population')
ax.set_ylabel('Profit')
ax.set_title('Predicted Profit vs. Population Size')
plt.show()
由于梯度方程式函数也在每个训练迭代中输出一个代价的向量,所以我们也可以绘制。 请注意,代价总是降低 - 这是凸优化问题的一个例子。
fig, ax = plt.subplots(figsize=(12,8))
ax.plot(np.arange(iters), cost, 'r')
ax.set_xlabel('Iterations')
ax.set_ylabel('Cost')
ax.set_title('Error vs. Training Epoch')
plt.show()
3.多变量线性回归
练习1还包括一个房屋价格数据集,其中有2个变量(房子的大小,卧室的数量)和目标(房子的价格)。 我们使用我们已经应用的技术来分析数据集。
path = 'ex1data2.txt'
data2 = pd.read_csv(path, header=None, names=['Size', 'Bedrooms', 'Price'])
data2.head()
Size | Bedrooms | Price | |
---|---|---|---|
0 | 2104 | 3 | 399900 |
1 | 1600 | 3 | 329900 |
2 | 2400 | 3 | 369000 |
3 | 1416 | 2 | 232000 |
4 | 3000 | 4 | 539900 |
对于此任务,我们添加了另一个预处理步骤 - 特征归一化。 这个对于pandas来说很简单
data2 = (data2 - data2.mean()) / data2.std()
data2.head()
Size | Bedrooms | Price | |
---|---|---|---|
0 | 0.130010 | -0.223675 | 0.475747 |
1 | -0.504190 | -0.223675 | -0.084074 |
2 | 0.502476 | -0.223675 | 0.228626 |
3 | -0.735723 | -1.537767 | -0.867025 |
4 | 1.257476 | 1.090417 | 1.595389 |
现在我们重复第1部分的预处理步骤,并对新数据集运行线性回归程序。
# add ones column
data2.insert(0, 'Ones', 1)
# set X (training data) and y (target variable)
cols = data2.shape[1]
X2 = data2.iloc[:,0:cols-1]
y2 = data2.iloc[:,cols-1:cols]
# convert to matrices and initialize theta
X2 = np.matrix(X2.values)
y2 = np.matrix(y2.values)
theta2 = np.matrix(np.array([0,0,0]))
# perform linear regression on the data set
g2, cost2 = gradientDescent(X2, y2, theta2, alpha, iters)
# get the cost (error) of the model
computeCost(X2, y2, g2)
0.13070336960771892
我们也可以快速查看这一个的训练进程。
fig, ax = plt.subplots(figsize=(12,8))
ax.plot(np.arange(iters), cost2, 'r')
ax.set_xlabel('Iterations')
ax.set_ylabel('Cost')
ax.set_title('Error vs. Training Epoch')
plt.show()
4. normal equation(正规方程)(选做)
正规方程是通过求解下面的方程来找出使得代价函数最小的参数的:
∂
∂
θ
j
J
(
θ
j
)
=
0
\frac{\partial }{\partial {{\theta }_{j}}}J\left( {{\theta }_{j}} \right)=0
∂θj∂J(θj)=0 。
假设我们的训练集特征矩阵为 X(包含了
x
0
=
1
{{x}_{0}}=1
x0=1)并且我们的训练集结果为向量 y,则利用正规方程解出向量
θ
=
(
X
T
X
)
−
1
X
T
y
\theta ={{\left( {{X}^{T}}X \right)}^{-1}}{{X}^{T}}y
θ=(XTX)−1XTy 。
上标T代表矩阵转置,上标-1 代表矩阵的逆。设矩阵
A
=
X
T
X
A={{X}^{T}}X
A=XTX,则:
(
X
T
X
)
−
1
=
A
−
1
{{\left( {{X}^{T}}X \right)}^{-1}}={{A}^{-1}}
(XTX)−1=A−1
梯度下降与正规方程的比较:
梯度下降:需要选择学习率α,需要多次迭代,当特征数量n大时也能较好适用,适用于各种类型的模型
正规方程:不需要选择学习率α,一次计算得出,需要计算 ( X T X ) − 1 {{\left( {{X}^{T}}X \right)}^{-1}} (XTX)−1,如果特征数量n较大则运算代价大,因为矩阵逆的计算时间复杂度为 O ( n 3 ) O(n3) O(n3),通常来说当 n n n小于10000 时还是可以接受的,只适用于线性模型,不适合逻辑回归模型等其他模型
# 正规方程
def normalEqn(X, y):
# your code here (appro ~ 1 lines)
theta = np.linalg.inv(X.T@X)@X.T@y
return theta
final_theta2=normalEqn(X, y)#感觉和批量梯度下降的theta的值有点差距
final_theta2
matrix([[-3.89578088],
[ 1.19303364]])
#梯度下降得到的结果是matrix([[-3.24140214, 1.1272942 ]])