51nod 1060 最复杂的数(反素数)
分析
即为寻找反素数,讲解见acdreamer
具体操作为dfs,详情见代码
trick
注意temp\(\times\) 1ULL \(\times\)prime[k]会爆unsigned long long,有可能返回的是\(2^{64}-1\)取模后的值,所以要写成temp>n/prim[k]
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define F(i,a,b) for(int i=a;i<=b;++i)
#define R(i,a,b) for(int i=a;i<b;++i)
#define mem(a,b) memset(a,b,sizeof(a))
int t;
ll n;
ll prime[16]={0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47};
ll bestnum,maxsum;
//当前枚举到的数;第k个素数;因子个数;质因子个数上限
void dfs(ll num,int k,ll sum,ll limit)
{
if(sum>maxsum)
{
maxsum=sum;
bestnum=num;
}
if((sum==maxsum)&&(bestnum>num)) bestnum=num;
ll temp=num;
if(k>15) return ;
//if(sum==86016) printf("%I64d %I64d\n",num,prime[k] );
for(ll i=1;i<=limit;++i)
{
//if(sum==86016) cout<<temp<<"*"<<prime[k]<<"="<<temp*1ULL*prime[k]<<endl;
if(temp>n/prime[k]) break;
temp*=prime[k];
//if(temp==392432243895291584) printf("%I64d %d %I64d\n",sum,k,i );
dfs(temp,k+1,sum*(i+1),i);
}
}
int main()
{
for(scanf("%d",&t);t--;)
{
scanf("%lld",&n);
bestnum=1;maxsum=0;
dfs(1,1,1,log(n)+1);
printf("%I64d %I64d\n",bestnum,maxsum );
}
return 0;
}
一直地一直地往前走