Educational Codeforces Round 21E selling souvenirs (dp)
传送门
题意
给出n个体积为wi,价值为ci的物品,现在有一个m大的背包
问如何装使得最后背包内的物品价值最大,输出价值
分析
一般的思路是01背包,但n*v不可做
题解的思路
We can iterate on the number of 3-elements we will take (in this editorial k-element is a souvenir with weight k). When fixing the number of 3-elements (let it be x), we want to know the best possible answer for the weight m - 3x, while taking into account only 1-elements and 2-elements.
To answer these queries, we can precalculate the values dp[w] — triples (cost, cnt1, cnt2), where cost is the best possible answer for the weight w, and cnt1 and cnt2 is the number of 1-elements and 2-elements we are taking to get this answer. Of course, dp[0] = (0, 0, 0), and we can update dp[i + 1] and dp[i + 2] using value of dp[i]. After precalculating dp[w] for each possible w we can iterate on the number of 3-elements.
这道题我还没有真正理解,留坑
trick
代码
#include <cstdio>
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <cmath>
#include <string>
#include <cstring>
#include <sstream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int Maxm = 300015;
const int Maxw = 3;
int n, m;
ll best[Maxm];
vector <int> seq[Maxw];
ll Solve()
{
int i = 0, j = 0;
ll cur = 0, w = 0;
ll res = best[m];
if (i < seq[0].size() && 1 <= m) res = max(res, seq[0][i] + best[m - 1]);
while (i + 2 <= seq[0].size() || j + 1 <= seq[1].size()) {
if (i + 2 <= seq[0].size() && (j + 1 > seq[1].size() || seq[0][i] + seq[0][i + 1] > seq[1][j])) {
cur += seq[0][i] + seq[0][i + 1]; w += 2; i += 2;
} else {
cur += seq[1][j]; w += 2; j++;
}
if (w <= m) res = max(res, cur + best[m - w]);
if (w + 1 <= m) {
if (i < seq[0].size()) res = max(res, cur + ll(seq[0][i]) + best[m - w - 1]);
if (i > 0 && j < seq[1].size()) res = max(res, cur + ll(seq[1][j]) - ll(seq[0][i - 1]) + best[m - w - 1]);
}
}
return res;
}
int main()
{
scanf("%d %d", &n, &m);
for (int i = 0; i < n; i++) {
int w, c; scanf("%d %d", &w, &c);
seq[w - 1].push_back(c);
}
for (int i = 0; i < Maxw; i++)
sort(seq[i].rbegin(), seq[i].rend());
ll cur = 0;
for (int i = 0; i < seq[2].size(); i++) {
cur += seq[2][i];
best[3 * (i + 1)] = cur;
}
for (int i = 0; i + 1 <= m; i++)
best[i + 1] = max(best[i + 1], best[i]);
printf("%I64d\n", Solve());
return 0;
}