【CBAM】2018-ECCV-CBAM: Convolutional block attention module-论文阅读
CBAM
2018-ECCV-CBAM: Convolutional block attention module
来源: ChenBong 博客园
- Institute:KAIST,Lunit,Adobe
- Author:Sanghyun Woo, Jongchan Park, Joon-Young Lee, In So Kweon
- GitHub:
- Citation: 1600+
Introduction
提出了一种在 channel-wise 和 spatial-wise 的注意力模块,可以嵌入任何CNN,在增加微小的计算开销的情况下,显著提高模型性能。
Motivation
- 人类视觉会关注到重要的部分,而不是图片的每个像素
Contribution
- 简单高效的 attention 模块(CBMA),可以用来嵌入任何CNN结构
Method
Feature MAP: \(\mathbf{F} \in \mathbb{R}^{C \times H \times W}\)
1D Channel attention Map: \(\mathbf{M}_{\mathbf{c}} \in \mathbb{R}^{C \times 1 \times 1}\)
2D Spatial attention Map: \(\mathbf{M}_{\mathbf{s}} \in \mathbb{R}^{1 \times H \times W}\)
Feature MAP 先乘 1D 的 Channel attention Map,再乘 2D 的 Spatial attention Map:
\(\mathbf{F}^{\prime}=\mathbf{M}_{\mathbf{c}}(\mathbf{F}) \otimes \mathbf{F}\)
\(\mathbf{F}^{\prime \prime}=\mathbf{M}_{\mathbf{s}}\left(\mathbf{F}^{\prime}\right) \otimes \mathbf{F}^{\prime}\)
Channel attention module
\(\begin{aligned} \mathbf{M}_{\mathbf{c}}(\mathbf{F}) &=\sigma(\operatorname{MLP}(\operatorname{AvgPool}(\mathbf{F}))+M L P(\operatorname{MaxPool}(\mathbf{F}))) \\ &=\sigma\left(\mathbf{W}_{\mathbf{1}}\left(\mathbf{W}_{\mathbf{0}}\left(\mathbf{F}_{\mathbf{a v g}}^{\mathbf{c}}\right)\right)+\mathbf{W}_{\mathbf{1}}\left(\mathbf{W}_{\mathbf{0}}\left(\mathbf{F}_{\max }^{\mathbf{c}}\right)\right)\right) \end{aligned}\)
其中 \(\mathbf{W_0}\) 和 \(\mathbf{W_1}\) 是2层的Share MLP的参数
Spatial attention module
\(\begin{aligned} \mathbf{M}_{\mathbf{s}}(\mathbf{F}) &=\sigma\left(f^{7 \times 7}([\operatorname{AvgPool}(\mathbf{F}) ; \operatorname{MaxPool}(\mathbf{F})])\right) \\ &=\sigma\left(f^{7 \times 7}\left(\left[\mathbf{F}_{\mathbf{a v g}}^{\mathbf{s}} ; \mathbf{F}_{\mathbf{m a x}}^{\mathbf{s}}\right]\right)\right) \end{aligned}\)
Arrangement of attention modules
3种组合方式:并行,Channel first,Spatial first
其中 Channel first 更好
Experiments
Ablation studies
Channel attention
Spatial attention
Arrangement
main result
Image Classification on ImageNet
Object detection on COCO and VOC
Attention Visualization (Grad-CAM)
Conclusion
Summary
pros:
- 方法简单统一(AvgPool+MaxPool)+MLP/Conv
- 效果好(Res50上提将近2个点),架构无关,任务无关,通用的模块
- attention可视化的图画的很好,softmax score 提升明显
To Read
Reference
万字长文:特征可视化技术(CAM) https://zhuanlan.zhihu.com/p/269702192
CAM和Grad-CAM https://bindog.github.io/blog/2018/02/10/model-explanation/