AC自动机基础知识讲解

AC自动机

转载自:小白

还可参考:飘过的小牛

 

1.KMP算法:

      a. 传统字符串的匹配和KMP:

      对于字符串S = ”abcabcabdabba”,T = ”abcabd”,如果用T去匹配S下划线部分是当前已经匹配好的前缀,当c和d不匹配时:

            S:abcabcabdabba
            T:abcabd

      传统的算法是将T串向后移动一个单位,然后重新匹配。如果利用KMP算法则直接将T向后移动3位,即:

            S:abcabcabdabba
            T:       abcabd

      其中,下划线部分的ab是T和S已经匹配好的部分。

      b. next数组(函数):

      next数组就是上面后移的关键,它用来计算当前字符串匹配失败时,T的指针向前移动的位置(这就等效于将T后移)。

      那么,为什么T利用next跳转指针是正确的,而next又是怎么求的呢。

      next[i]其实记录的就是以i为结束位置的串的后缀,和T的前缀的最大匹配长度。如下图:


            这个图片,非常完美的揭示了KMP的实质,T的前next[i]个元素和T[i]前面的next[i]个元素是相同的。

       c. next数组(函数)的计算:

       上面的图片,也揭示了next数组的计算过程,观察图片我们会发现,其实next数组将所记录的前缀串,具有递归的属性。每个next[k]长度的黑色部分就是和下面的T [0..k-1]相同的子结构,利用递推关系就可以求解next[i]。 

       因此,如果T[i] = T[next[i]],那么next[i+1] = next[i]+1;相反T[i] ≠ T[next[i]],那么需要比较next[next[i]]长度的字串,即T[i]和T[next[i]]比较,一直递归到开始位置,或者一个T[i] = T[next[..next[i]..]]的状态,则next[i+1] = next[..next[i]..]+1。

 
  1. void getnext( T )  
  2. {  
  3.     next[0] = 0;  
  4.     int i = 0,j = 1;  
  5.     while ( i < T.length ) {  
  6.         if ( T[i] == T[j] ) {  
  7.             i ++; j ++;  
  8.             next[i] = j;  
  9.         }else j = next[j];  
  10.     }  
  11. }  

     d. KMP匹配:

     对串S和T匹配,如果当前字母匹配失败,则T对应当前位置,调回到对应的next位置。

[cpp] view plain copy
 
 print?在CODE上查看代码片派生到我的代码片
  1. void KMP( S,T )  
  2. {  
  3.     int i = 0,j = 0;  
  4.     while ( i < length(T) ) {  
  5.         if ( S[i] == T[j] ) {  
  6.             i ++; j ++;  
  7.         }else j = next[j];  
  8.     }  
  9. }  

      上面是KMP算法的运行过程,是不是觉得和next的求解过程很相似呢,其实next的求解过程就是,T[0..length(T)]和T[1..length(T)]的匹配。

2.多字符串匹配问题和Trie(字典树):

      对于多字符串匹配问题,我们一般会用hash(散列表)或者Trie(字典树)储存。

      a.hash:

      将字符串利用hash函数映射到对应的hash值,然后将字符串插入对应函数值点的储存空间。(这里不关于hash函数的选择和具体实现方式。)

      b.Trie:

      这是一个树,输的节点有|{字符集}|个指针,如果一个单词对应的字母的x后面有字母y,那么他的y指针就指向一个新的节点。

                     
            上图是一个集合{he,hers,his,she}构成的字典树。

      c.字典树的定义:

      字典树的节点如下面,数据分为两部分;一部分是指针数组,用来指向单词的下一个字母;另一部分是数据域,存储单词结尾的标记、单词计数、或者是字符串之间映射的对应串。

 
  1. typedef struct node {   
  2.     type save;   
  3.     node* next[LETTE_SIZE];   
  4. }tnode;  

 

      d.新单词的插入:

      从根节点开始查找,如果单词当前字母指针不空,则沿着这个指针查找;如果为空,则插入新的节点,沿着该节点方向查找。

 
  1. void insert( char* word, int l, type data )  
  2. {  
  3.     tnode* now = root;  
  4.     for ( int i = 0 ; i < l ; ++ i ) {  
  5.         if ( !now->next[word[i]-'a'] )  
  6.             now->next[word[i]-'a'] = newnode();  
  7.         now = now->next[word[i]-'a'];  
  8.     }Deal(now->save, data);//处理相应操作  
  9. }  

      新节点的插入:每次插入的新节点,初始化所有指针和数据域初始为空。

 
  1. tnode* newnode()   
  2. {  
  3.     for ( int i = 0 ; i < 26 ; ++ i )  
  4.         dict[size].next[i] = NULL;  
  5.     dict[size].word = NULL;  
  6.     return &dict[size ++];  
  7. }  

e.单词查询:

      返回对应单词结束位置节点的save即可。

 
  1. type query( char* word, int l )   
  2. {  
  3.     tnode* now = root;  
  4.     for ( int i = 0 ; i < l ; ++ i ) {  
  5.         if ( !now->next[word[i]-'a'] )   
  6.             return false;  
  7.         now = now->next[word[i]-'a'];  
  8.     }return now->save;  
  9. }  

3.AC自动机的介绍:

      在此认为大家已经有了 KMP算法以及Trie(字典树)的基础(如果,上面的讲述不够详细,还请查看相关资料)。AC自动机可以理解为 KMP算法的多模式串形式扩展。
那么什么是 AC自动机呢,通俗的说就是Trie的每个节点加上了一个fail指针,fail指针指向当前匹配失败的跳转位置,这就类似于KMP的next数组。

4.AC自动机的构造:

 

       既然我们知道了 AC自动机是用来做什么的,那么我们就来说一说怎么在 Trie上构造 AC自动机。

       首先,我们看一下条转时的条件,如同 KMP算法一样, AC自动机在匹配时如果当前字符匹配失败,那么利用fail指针进行跳转。由此可知如果跳转,跳转到的串的前缀,必为跳转前的模式串的后缀。由此可知,跳转的新位置的深度一定小于跳之前的节点。所以我们可以利用 bfs在 Trie上面进行 fail指针的求解。

      下面,是具体的构造过程(和KMP是一样的)。首先 root节点的fail定义为空,然后每个节点的fail都取决自己的父节点的fail指针,从父节点的fail出发,直到找到存在这个字符为边的节点(向回递归),将他的孩子赋值给寻找节点。如果找不到就指向根节点,具体参照代码:

 
  1. setfail()   
  2. {  
  3.     Q[0] = root;   
  4.     root->fail = NULL;  
  5.     for ( int move = 0,save = 1 ; move < save ; ++ move ) {//利用bfs求解   
  6.         tnode* now = Q[move];  
  7.         for ( int i = 0 ; i < dictsize ; ++ i )  
  8.             if ( now->next[i] ) {  
  9.             tnode* p = now->fail;//从父节点的fail节点开始  
  10.             while ( p && !p->next[i] ) p = p->fail;//寻找本节点的fail节点  
  11.             now->next[i]->fail = p?p->next[i]:root;//不存在fail赋值为root      
  12.             Q[save ++] = now->next[i];  
  13.         }  
  14.     }  
  15. }  

      在前面的Trie建立了fail指针(虚线){其实,这两个图片上的字符应该是在边上的,偷懒了,网上找的图片,有时间回来自己做一下}

4.多串匹配:

      既然已经构造好 AC自动机,下面就是写出他的最常见的操作,多串匹配。其实匹配过程很简单,利用Trie匹配字符串,如果失败利用fail指针找到下次匹配的位置即可。具体参照代码:

 
  1. query( char* line )   
  2. {  
  3.     tnode* now = root;  
  4.     for ( int i = 0 ; line[i] ; ++ i ) {  
  5.         int index = ID( line[i] );//取得字符对应的边的编号  
  6.         while ( now && !now->next[index] ) now = now->fail;//如果不能匹配,寻找fail指向的节点  
  7.         now = now?now->next[index]:root;//失败时返回root,否则返回节点  
  8.         for ( tnode* p = now ; p ; p = p->fail )  
  9.             判断匹配  
  10.     }  
  11. }  

5.对于 AC自动机的改进:

      通过匹配的过程我们可以看出,fail是用来寻找下次跳转的位置的,跳转时的 next一定是为空的。那么我们为什么不用这些 next指针直接指向下一个跳转节点呢,那样的话,匹配时每次去 next指针的对象即可。这个被称作Trie图,具体参照代码:

 
  1. setfail()   
  2. {  
  3.     Q[0] = root;  
  4.     root->fail = NULL;  
  5.     for ( int move = 0,save = 1 ; move < save ; ++ move ) {  
  6.         tnode* now = Q[move];  
  7.         for ( int i = 0 ; i < dictsize ; ++ i )  
  8.         if ( now->next[i] ) {  
  9.             tnode* p = now->fail;  
  10.             while ( p && !p->next[i] ) p = p->fail;   
  11.             now->next[i]->fail = p?p->next[i]:root;  
  12.             Q[save ++] = now->next[i];  
  13.         }else now->next[i] = now!=root?now->fail->next[i]:root;//其实只多了这一句  
  14.     }  
  15. }   

6.从自动机的角度理解:

      自动机可以理解成一个有向图,图中的每个节点都代表一个状态,边上对应的是识别的字符,那么每次识别一个字符就会发生一个状态转向另一个状态。有一个初始状态(root),很多个结束状态(Trie中被标记的点)。

      那么我们的匹配过程就是从 root状态出发,利用串的字符寻找下一个状态,每走一步就吃掉一个字符,如果发现到达标记状态则匹配成功。


      这是一个自动机的示例,其中箭头指向的是起始状态(S),双圈的代表结束状态(C,D,E,F)

7.时间复杂度分析:

      对于Trie的匹配来说时间复杂性为:O(max(L(Pi))L(T))其中L串的长度函数,P是模式串,T是目标串。

      对于 AC自动机来说时间复杂性为:O(L(T)+max(L(Pi))+m)气质m是模式串的数量。

      对于 Trie 图 来说时间复杂性为:O(L(T))在此的时间复杂性都是指匹配的复杂度。

      对于构造的代价是 O(sum(L(Pi)))其中sum是求和函数。

8.题目分析:

      下面对于近期所做的 AC自动机的题目加以分类总结

      a.模式匹配:这类问题一般都是统计目标串中模式串的个数。下面是oj中的题目编号,和说明:

            hdu1686 Oulipo: 寻找模式串的出现次数,可以重复及覆盖,直接求解
            hdu2087 剪花布条: 同上
            hdu2222 Keywords Search: 同上
            hdu2896 病毒侵袭: 同上
            hdu3065 病毒侵袭持续中: 同上,不过要注意非法字符直接返回root,否则会RE
            hdu3336 Count thestring: 同上上
            zoj3228 Searching the String: 同上,不过不允许覆盖,记录每个状态的最晚结束位置即可
            zoj3430 Detect the Virus: 同上上,统计很简单,主要是编码有点纠结

      b.字符串统计:这类题目一般都是求解某种串个数,可先求解状态转移矩阵然后利用矩阵乘法或 DP求解

            poj2778 DNA Sequence: 求解不包含某些子串的串的个数,利用AC自动机构造转移矩阵,然后利用矩阵乘法求解路径个数
            hdu2243 考研路茫茫——单词情结:上题的升级版,做法一样,由于长度不定最后要利用快速幂和,有点纠结
            zoj1540 Censored!: 题目和上面的类似,不过状态过多不宜使用矩阵乘法,所以利用 DP求解
            hdu2825 Wireless Password: 统计关键字不少于k的串的个数,并且每个只用一次,先利用状态压缩 DP统计 

      c.字符串构造(AC自动机+DP):其实本组和上一组基本相同,不过都是求最优解,所以单独拿出来了,而且没什么共同点

            zoj3013 Word Segmenting: 其实这个题目本来是用字典树写的,学了AC自动机之后就优化了一下,求解单词覆盖的最小失败次数
            poj3691 DNA repair: 求解将目标串取除某些串的最少操作,改变合法状态时如果对应不同则+1,否则不变;非法则不转移
            zoj3545 Rescue the Rabbit: 这就是万恶之源了,AC自动机就是为了他学的,构造最优串,用状态压缩DP记录转移状态,最后求解
            hdu2296 Ring: 构造一个串使其权值最大长度最小,而且要字典序最小。有点纠结,DP长度短的优先,然后字典序
            hdu3341 Lost's revenge: 传说中的RE神题,由于状态计算错误,导致RE2次,其实就是DP,不过要先将状态分解在拼装
            zoj3190 Resource Archiver: 本次学习的收尾题目,传说中的神题,要先构造AC自动机,然后利用最短路优化将问题转化为TSP问题

最后我觉得很好的模板代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
#define N 500010
char str[1000010],keyword[51];
int head,tail;

struct node
{
    node *fail;
    node *next[26];
    int count;
    node()
    {
        fail=NULL;
        count=0;
        for(int i=0;i<26;i++)
        next[i]=NULL;
    }
}*q[N];
node *root;

void insert(char *str) ///建立Trie
{
    int temp,len;
    node *p=root;
    len=strlen(str);
    for(int i=0;i<len;i++)
    {
        temp=str[i]-'a';
        if(p->next[temp]==NULL)
           p->next[temp]=new node();
        p=p->next[temp];
    }
    p->count++;
}

void setfail() ///初始化fail指针,BFS
{
    q[tail++]=root;
    while(head!=tail)
    {
        node *p=q[head++];
        node *temp=NULL;
        for(int i=0;i<26;i++)
        if(p->next[i]!=NULL)
        {
            if(p==root) ///首字母的fail必指向根
            p->next[i]->fail=root;
            else
            {
                temp=p->fail; ///失败指针
                while(temp!=NULL) ///2种情况结束:匹配为空or找到匹配
                {
                    if(temp->next[i]!=NULL) ///找到匹配
                    {
                        p->next[i]->fail=temp->next[i];
                        break;
                    }
                    temp=temp->fail;
                }
                if(temp==NULL) ///为空则从头匹配
                    p->next[i]->fail=root;
                }
            q[tail++]=p->next[i]; ///入队
        }
    }
}

int query()
{
    int index,len,result;
    node *p=root;
    result=0;
    len=strlen(str);
    for(int i=0;i<len;i++)
    {
        index=str[i]- 'a';
        while(p->next[index]==NULL&&p!=root) ///跳转失败指针
        p=p->fail;
        p=p->next[index];
        if(p==NULL)
        p=root;
        node *temp=p; ///p不动,temp计算后缀串
        while(temp!=root&&temp->count!=-1)
        {
            result+=temp->count;
            temp->count=-1;
            temp=temp->fail;
        }
    }
    return result;
}

int main()
{
    int T, num;
    scanf("%d",&T);
    while(T--)
    {
        head=tail=0;
        root = new node();
        scanf("%d", &num);
        getchar();
        for(int i=0;i<num;i++)
        {
            gets(keyword);
            insert(keyword);
        }
        setfail();
        scanf("%s",str);
        printf("%d\n",query());
    }
    return 0;
}

 

posted @ 2016-03-29 16:58  茶飘香~  阅读(474)  评论(0编辑  收藏  举报