用python写openvino yolov5目标检测代码

 

 检测代码

复制代码
import cv2
import numpy as np
import time

#from openvino.runtime import Core  # the version of openvino >= 2022.1 # openvino 2022.1.0 has requirement numpy<1.20,>=1.16.6
from openvino.inference_engine import IECore # the version of openvino <= 2021.4.2

classes = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
        'hair drier', 'toothbrush']  # class names

class OpenVinoYoloV5Detector():

    def __init__(self,IN_conf):
        # ie = Core()  # Initialize Core version>=2022.1
        # self.Net = ie.compile_model(model=IN_conf.get("weight_file"),device_name=IN_conf.get("device"))

        ie = IECore()  # Initialize IECore  openvino <= 2021.4.2
        self.Net = ie.load_network(network=IN_conf.get("weight_file"), device_name=IN_conf.get("device"))

        self.INPUT_HEIGHT = 640
        self.INPUT_WIDTH = 640

    # YOLOv5目标检测
    def detect(self, image):

        blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (self.INPUT_WIDTH, self.INPUT_HEIGHT), swapRB=True, crop=False)

        # openvino >= 2022.1
        # results = net([blob])[next(iter(net.outputs))]
        # results = self.Net([blob])[self.Net.output(0)]

        # openvino <= 2021.4.2
        results = self.Net.infer(inputs={"images": blob})
        results = results["output"]

        self.process_results(image, results)

    # YOLOv5的后处理函数,解析模型的输出
    def process_results(self,image, results,thresh=0.25):

        h, w, _ = image.shape

        class_ids = []
        boxes = []
        scores = []

        results = results[0]
        rows = results.shape[0]

        y_factor = h / self.INPUT_HEIGHT
        x_factor = w / self.INPUT_WIDTH

        for r in range(rows):
            row = results[r]
            score = row[4]

            if score >= 0.4 :

                classes_scores = row[5:]

                _, _, _, max_indexes = cv2.minMaxLoc(classes_scores)
                class_id = max_indexes[1]

                if classes_scores[class_id] > 0.25:
                    x, y, w, h = row[0].item(), row[1].item(), row[2].item(), row[3].item()

                    x1 = int((x - 0.5 * w) * x_factor)
                    y1 = int((y - 0.5 * h) * y_factor)
                    x2 = x1 + int(w * x_factor)
                    y2 = y1 + int(h * y_factor)
                    boxes.append((x1,y1, x2, y2))
                    class_ids.append(class_id)
                    scores.append(score)

        # default score_threshold=0.25, nms_threshold=0.45
        indices = cv2.dnn.NMSBoxes(bboxes=boxes, scores=scores, score_threshold=thresh, nms_threshold=0.45)

        for index in indices:
            x1, y1, x2,y2 = boxes[index][0], boxes[index][1], boxes[index][2], boxes[index][3]
            cv2.rectangle(frame, (x1,y1), (x2,y2), (0,255,0), 2)
            cv2.putText(frame, str(classes[class_ids[index]]), (x1, y1 + 20), cv2.FONT_HERSHEY_SIMPLEX, .5,(255,255,255))

if __name__ == '__main__':
    IN_conf = {
        "weight_file": "weights/yolov5n_openvino_model/yolov5n.xml",
        "device": "CPU"#"GPU"
    }
    detector = OpenVinoYoloV5Detector(IN_conf=IN_conf)

    url = 'bus.jpg'

    cap = cv2.VideoCapture(url)

    while True:
        r, frame = cap.read()
        if r:
            t1 = time.time()
            detector.detect(frame)
            cv2.imshow('OpenVinoYoloV5Detector.py', frame)
            t2 = time.time()
        else:
            print("读取%s结束" % str(url))
            break

    cv2.waitKey(0)
    cap.release()
    cv2.destroyAllWindows()
复制代码

 

posted @   CHHC  阅读(174)  评论(0编辑  收藏  举报
(评论功能已被禁用)
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
点击右上角即可分享
微信分享提示