【agc002f】Leftmost Ball
题目大意
有n种颜色,每种k个球。将这些球任意排列,将每种颜色中最前面的一个求涂成白色(就是n+1种颜色),求最终的排列的方案的个数。
解题思路
考虑如何计算不会算重,
按颜色顺序,每次往排列插入k个球,k-1个某种颜色,以及一个白球。
那么只要我们每次插入k个球时,保证白球一定在之前插入的白球的后面,并且某种颜色的第一个球,放在上一次的颜色的第一个球的后面,就可以保证不会算重,最后再乘个n!。
但是正着不好做,于是反过来插入,先插的n种颜色,dp一下,设f[i][j]表示放到第i种颜色,前面有j+1个白球(为啥是j+1?其实只是为了方便)。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <bitset>
#include <set>
const int maxlongint=2147483647;
const long long mo=1e9+7;
const int N=2005;
using namespace std;
int n,k;
long long f[N][N],jc[N*N],ny[N*N],ans;
long long poww(long long x,int y)
{
long long s=1;
for(;y;y>>=1,x=x*x%mo)
if(y&1) s=s*x%mo;
return s;
}
long long C(int m,int n)
{
if(n>m) return 0;
return jc[m]*ny[n]%mo*ny[m-n]%mo;
}
int main()
{
scanf("%d%d",&n,&k);
if(k<=1)
{
printf("1\n");
return 0;
}
jc[0]=ny[0]=1;
for(int i=1;i<=n*k;i++) jc[i]=jc[i-1]*i%mo,ny[i]=poww(jc[i],mo-2);
f[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=i;j>=0;j--)
f[i][j]=(f[i][j]+f[i-1][j-1]*C(k*i-j-1,k-2)%mo+f[i][j+1])%mo;
printf("%lld",f[n][0]*jc[n]%mo);
}