Atcoder Regular Contest 066 F genocide【JZOJ5451】
题目
分析
\(s[i]\)表示a前缀和。
设\(f[i]\)表示做完了1~i的友谊颗粒的最优值(不一定选i),那么转移方程为
\[f[i]=max\{f[i-1],max\{f[j]-s[i]+s[j]+\dfrac{(i-j)(i-j+1)}{2}\}\}$$,用斜率优化来处理这个。
类似的,设$g_i$表示做完了i~n的友谊颗粒的最优值(不一定选i),
将a翻转,像f一样做一遍,再将g翻转就可以了。
对于询问(p,x),如果我们不选择p,那么答案就是$f[i-1]+g[i+1]$
如果我们选择了p,我们再设$F[i]$表示,必选i的最优值。
$$F[i]=max\{f[j]+g[k]+\dfrac{(k-j+1)(k-j+2)}{2}\}(j<i<k)\]
时间复杂度是\(O(N^2)\)
如何可以更快的求出\(F[i]\)呢,
分治,假设当前做到\([l,r]\),左端点\([l,mid]\),i和右端点在\([mid+1,r]\)
\(tmp[i]\)表示做完了左端点~i的友谊颗粒,且必选i的最优值
我们将\([l-1,mid-1]\)的端点扔进斜率优化的单调栈,扫一遍\([mid+1,r]\)求出tmp,
\[tmp[i]=max\{f[j]+g[i+1]+\dfrac{(i-j+1)(i-j+2)}{2}\}(j\in{[l-1,mid-1]}<i\in{[mid+1,r]})
\]
那么\(F[i]\)就是当前区间\(tmp[i]\)的后缀max
因为只考虑了i在\([mid+1,r]\)的情况,反过来做一遍就可以了。
那么选择了p的的最优值就是\(F[p]+a[p]-x\)
#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <queue>
#include <stack>
using namespace std;
const int maxlongint=2147483647;
const int mo=1e9+7;
const int N=1000005;
#define rev(h) for(int i=1;i<=n/2;i++) swap(h[i],h[n-i+1])
#define val(h,j,k) 1ll*(h[j]-h[k]+s[j]-s[k]-1ll*j*1.0/2+1ll*k*1.0/2+1ll*j*j*1.0/2-1ll*k*k*1.0/2)*1.0/(j-k)
int n,m,t[N],top;
long long a[N],s[N],f[N],g[N],F[N],tmp[N];
void dg(long long *f,long long *g,int l,int r)
{
if(l==r)
{
F[l]=max(F[l],f[l-1]+g[l+1]+1-a[l]);
return;
}
int mid=(l+r)>>1;
top=0;
for(int i=l-1;i<=mid;i++)
{
for(;top>1 && val(f,i,t[top])>=val(f,t[top],t[top-1]);) top--;
t[++top]=i;
}
for(int i=mid+1;i<=r;i++)
{
for(;top>1 && val(f,t[top],t[top-1])<=i;) top--;
int j=t[top];
tmp[i]=f[j]-(s[i]-s[j])+1ll*(i-j)*(i-j+1)/2+g[i+1];
}
for(int i=r-1;i>=mid+1;i--) tmp[i]=max(tmp[i],tmp[i+1]);
for(int i=r;i>=mid+1;i--) F[i]=max(F[i],tmp[i]);
dg(f,g,l,mid),dg(f,g,mid+1,r);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]),s[i]=s[i-1]+a[i],F[i]=-a[i]+1;
t[top=1]=0;
for(int i=1;i<=n;i++)
{
for(;top>1 && val(f,t[top],t[top-1])<=i;) top--;
int j=t[top];
f[i]=max(f[j]-(s[i]-s[j])+1ll*(i-j)*(i-j+1)/2,f[i-1]);
for(;top>1 && val(f,i,t[top])>=val(f,t[top],t[top-1]);) top--;
t[++top]=i;
}
rev(a);
t[top=1]=0;
for(int i=1;i<=n;i++) s[i]=s[i-1]+a[i];
for(int i=1;i<=n;i++)
{
for(;top>1 && val(g,t[top],t[top-1])<=i;) top--;
int j=t[top];
g[i]=max(g[j]-(s[i]-s[j])+1ll*(i-j)*(i-j+1)/2,g[i-1]);
for(;top>1 && val(g,i,t[top])>=val(g,t[top],t[top-1]);) top--;
t[++top]=i;
}
rev(a);
for(int i=1;i<=n;i++) s[i]=s[i-1]+a[i];
rev(g);
dg(f,g,1,n);
rev(a);
rev(g);
for(int i=1;i<=n;i++) s[i]=s[i-1]+a[i];
rev(F);
rev(f);
dg(g,f,1,n);
rev(F);
rev(g);
rev(f);
rev(a);
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
long long p,x;
scanf("%lld%lld",&p,&x);
printf("%lld\n",max(f[p-1]+g[p+1],F[p]+a[p]-x));
}
}