欧拉函数的一个性质及其证明
性质#
欧拉函数φ(n)指小于或等于n的正整数中与n互质的数的数目,假设$$n=p_{1}{e_{1}}*p_{2}{e_{2}}···p_{k}^{e_{k}}(p_{i}是质数(1<=i<=k))$$ 那么$$φ(n)=(p_{1}-1)p_{1}{e_{1}-1}*(p_{2}-1)p_{2}-1}··(p_{k}-1)p_{k}^{e_{k}-1}·$$其中
\[\sum_{d|n}φ(d)=n
\]
证明#
令函数$$f(n)=\sum_{d|n}φ(d)$$因此$$f(p_{i}{e_{i}})=φ(1)+φ(p_{i})+φ(p_{i})+···+φ(p_{i}{e_{i}})=1+p_{i}-1+p_{i}-p_{i}+···+p_{i}{e_{i}}-p_{i}-1}=p_{i}^{e_{i}}(p_{i}是质数(1<=i<=k))$$因为φ(n)是积性函数,所以f(n)也是积性函数(这里没证明)。
假设$$n=p_{1}{e_{1}}*p_{2}{e_{2}}···p_{k}{e_{k}}$$所以$$\sum_{d|n}φ(d)=f(n)=f(p_{1}{e_{1}}p_{2}{e_{2}}*···*p_{k}{e_{k}})=f(p_{1}{e_{1}})*f(p_{2}{e_{2}})···f(p_{k}{e_{k}})=p_{1}{e_{1}}p_{2}{e_{2}}*···*p_{k}{e_{k}}=n$$