python multiprocessing 使用

如何在Pool中使用Queue,Stack Overflow的回答,戳这里

其实吧官方文档看一遍应该就大部分都懂了。

需要注意的是:在使用多进程的时候,我们的进程函数的传入参数必须是pickle-able的,也就是参数必须可以被pickle保存下来,multiprocessing.Queue对象不能传递给pool.apply_*()等函数,需要使用multiprocessing.Manager().Queue()产生的对象

贴一下代码

# -*- coding: UTF-8 -*-
from multiprocessing import Process, Pool, Queue, Manager, JoinableQueue
import time
import os

res = []


def put_task():
    msg = []
    for i in xrange(50):
        time.sleep(0.1)
        msg.append(str(os.getpid()))
    return ','.join(msg)


def collect_results(result):
    res.append(result)


def take_task(queue):
    while 1:
        print(queue.get(True))


def task_put(name, que):
    for i in range(10):
        time.sleep(1)
        que.put("%d is done" % name)


def task_take_queue(que, n):
    i = 0
    while i < n:
        print(que.get(True))
        i += 1


def consumer(input_q):

    while True:
        item = input_q.get(True)
        # 处理项目
        print item  # 此处替换为有用的工作
        # 发出信号通知任务完成
        input_q.task_done()


def producer(output_q):
    sequence = [1, 2, 3, 4]  # range(5)[1:5]
    for item in sequence:
        # 将项目放入队列
        time.sleep(1)
        output_q.put(item)
        # 建立进程


def method_1():
    pool = Pool()
    res = pool.map_async(put_task, range(5))
    pool.close()
    pool.join()
    from pprint import pprint
    pprint(res.get())


def method_2():
    pool = Pool()
    pool.apply_async(put_task, callback=collect_results)
    pool.apply_async(put_task, callback=collect_results)
    pool.apply_async(put_task, callback=collect_results)
    pool.close()
    pool.join()
    from pprint import pprint
    pprint(res)


def method_3():
    pool = Pool(processes=10)
    m = Manager()
    q = m.Queue()
    for i in range(5):
        pool.apply_async(task_put, (i, q))
    pool.apply_async(task_take_queue, (q, 50))
    pool.close()
    pool.join()


def method_4():
    q = JoinableQueue()

    # 运行使用者进程
    cons_p = Process(target=consumer, args=(q,))
    cons_p.daemon = True  # 定义该进程为后台运行 True - When a process exits, it attempts to terminate all of its daemonic child processes.
    cons_p.start()
    # 生产项目,sequence代表要发送给使用者的项目序列
    # 在时间中,这可能是生成器的输出或通过一些其他方式生产出来

    producer(q)
    # 等待所有项目被处理
    q.join()


if __name__ == '__main__':
    method_4()


 1 import multiprocessing
 2 import os
 3 import time
 4 
 5 
 6 def pool_init(q):
 7     global queue  # make queue global in workers
 8     queue = q
 9 
10 
11 def task():
12     # can use `queue` here if you like
13     for i in range(5):
14         time.sleep(1)
15         queue.put(os.getpid())
16 
17 
18 def take_task():
19     while 1:
20         print(queue.get(True))
21 
22 
23 def run(pool):
24     tasks = []
25     tasks.append(pool.apply_async(take_task))
26     for i in range(os.cpu_count()):
27         tasks.append(pool.apply_async(task))
28     for t in tasks:
29         print(t.get(), )
30 
31 
32 if __name__ == '__main__':
33     queue = multiprocessing.Queue()
34     pool = multiprocessing.Pool(initializer=pool_init, initargs=(queue,))
35     run(pool)
36     pool.close()
37     pool.join()
View Code

 

 
posted @ 2017-08-27 22:28  chen-kh  阅读(1303)  评论(0编辑  收藏  举报