6.3 省选模拟赛 Decompose 动态dp 树链剖分 set

LINK:Decompose

avatar
avatar
avatar

看起来很难 实际上也很难 考验选手的dp 树链剖分 矩阵乘法的能力。

容易列出dp方程 暴力dp 期望得分28.

对于链的情况 容易发现dp方程可以转矩阵乘法 然后利用线段树维护矩阵即可。

这个矩阵很容易列出这里不再赘述。

对于100分 容易想到动态dp模型 LCT写动态dp是万万不能的。

而且这道题的dp方程和其他儿子也有些关系。

考虑树链剖分 然后分别计算轻儿子和重儿子的贡献。

让重儿子利用矩阵来进行转移 轻儿子当做常数.

这样每次修改的时候 修改的节点最多只有logn个.

用set维护需要维护的东西即可。

剩下的就是树链剖分型动态dp的套路 每次利用链顶的矩阵信息更新下一个节点即可。

一个细节:叶子节点可以直接列成\(L\cdot L\)的矩阵 只有第一个元素有值 这样更容易实现。

一个细节:可能矩阵乘法出来的值和原来的值不尽相同 此时考虑更新set的时候利用原来信息更新 然后更新原来信息即可。

思维难度:高 代码难度:极高。

const ll MAXN=100010;
ll n,Q,L,len,id;
ll top[MAXN],pos[MAXN],dfn[MAXN],fa[MAXN],c[MAXN],sum[MAXN];
ll a[MAXN][5],d[MAXN],son[MAXN],sz[MAXN],f[MAXN][5],w[MAXN];
ll lin[MAXN],ver[MAXN<<1],nex[MAXN<<1];
multiset<ll>s[MAXN][4];
struct wy
{
	ll b[5][5];
	ll l,r;
	wy(){l=r=0;rep(1,L,i)rep(1,L,j)b[i][j]=-INF;}
	wy friend operator +(wy a,wy b)
	{
		wy c;c.l=b.l;c.r=a.r;
		rep(1,L,i)rep(1,L,j)rep(1,L,k)
		c.b[i][j]=max(c.b[i][j],a.b[i][k]+b.b[k][j]);
		return c;
	}
}t[MAXN<<2];
inline void add(ll x,ll y)
{
	ver[++len]=y;
	nex[len]=lin[x];
	lin[x]=len;
}
inline void dfs(ll x,ll father)
{
	d[x]=d[father]+1;fa[x]=father;sz[x]=1;
	rep(2,L,j)f[x][j]=-INF;w[x]=-INF;
	f[x][1]=a[x][1];ll ans=0;
	go(x)if(tn!=father)
	{
		dfs(tn,x);
		if(sz[tn]>sz[son[x]])son[x]=tn;
		sz[x]+=sz[tn];
		rep(2,L,j)f[x][j]=max(f[x][j]+w[tn],f[tn][j-1]+a[x][j]+ans);
		ans+=w[tn];
	}
	f[x][1]+=ans;
	rep(1,L,j)w[x]=max(w[x],f[x][j]);
	go(x)if(tn!=father&&tn!=son[x])
	rep(1,L-1,j)s[x][j].insert(f[tn][j]-w[tn]);
	sum[x]=ans-w[son[x]];
}
inline void dp(ll x,ll father)
{
	top[x]=father;dfn[x]=++id;pos[id]=x;c[father]=x;
	if(!son[x])return;
	dp(son[x],father);
	go(x)if(tn!=son[x]&&tn!=fa[x])dp(tn,tn);
}
inline void build(ll p,ll l,ll r)
{
	l(p)=l;r(p)=r;
	if(l==r)
	{
		ll x=pos[l];
		if(sz[x]==1)
		{
			rep(1,L,i)rep(1,L,j)t[p].b[i][j]=-INF;
			t[p].b[1][1]=a[x][1];
		}
		else
		{
			rep(1,L,i)t[p].b[i][1]=a[x][1]+sum[x];
			ll flag=s[x][1].size();
			rep(2,L,j)
			{
				ll ww=flag?(*--s[x][j-1].end()):-INF;
				rep(1,L,i)t[p].b[i][j]=a[x][j]+sum[x]+ww;
				t[p].b[j-1][j]-=ww;
			}
		}
		return;
	}
	ll mid=(l+r)>>1;
	build(zz,l,mid);
	build(yy,mid+1,r);
	t[p]=t[yy]+t[zz];
}
inline void change(ll p,ll x)
{
	if(l(p)==r(p))
	{
		ll x=pos[l(p)];
		if(sz[x]==1)
		{
			rep(1,L,i)rep(1,L,j)t[p].b[i][j]=-INF;
			t[p].b[1][1]=a[x][1];
		}
		else
		{
			rep(1,L,i)t[p].b[i][1]=a[x][1]+sum[x];
			ll flag=s[x][1].size();
			rep(2,L,j)
			{
				//cout<<s[x][j-1].size()<<endl;
				ll ww=flag?(*(--s[x][j-1].end())):-INF;
				rep(1,L,i)t[p].b[i][j]=a[x][j]+sum[x]+ww;
				t[p].b[j-1][j]-=ww;
				//cout<<t[p].b[j-1][j]<<endl;
			}
			//rep(1,L,i){rep(1,L,j)cout<<t[p].b[i][j]<<' ';cout<<endl;}
		}
		return;
	}
	ll mid=(l(p)+r(p))>>1;
	if(x<=mid)change(zz,x);
	else change(yy,x);
	t[p]=t[yy]+t[zz];
}
inline wy ask(ll p,ll l,ll r)
{
	if(l<=l(p)&&r>=r(p))return t[p];
	ll mid=(l(p)+r(p))>>1;
	if(l>mid)return ask(yy,l,r);
	if(r<=mid)return ask(zz,l,r);
	return ask(yy,l,r)+ask(zz,l,r);
}
inline void Tchange(ll x)
{
	ll fx=top[x];
	while(fx!=1)
	{
		change(1,dfn[x]);
		wy w1=ask(1,dfn[fx],dfn[c[fx]]);
		x=fa[fx];//修改x.
		ll cnt1=-INF;
		rep(1,L,i)cnt1=max(cnt1,w1.b[1][i]);
		sum[x]=sum[x]-w[fx]+cnt1;
		fep(L-1,1,i)
		{
			s[x][i].erase(s[x][i].find(f[fx][i]-w[fx]));
			s[x][i].insert(w1.b[1][i]-cnt1);
			f[fx][i]=w1.b[1][i];
		}
		w[fx]=cnt1;fx=top[x];
	}
	change(1,dfn[x]);
	wy ww=ask(1,dfn[1],dfn[c[1]]);ll ans=-INF;
	rep(1,L,i)
	{
		ans=max(ans,ww.b[1][i]);
		//cout<<ww.b[1][i]<<' ';
	}
	//puts("");
	putl(ans);
}
signed main()
{
	freopen("decompose.in","r",stdin);
	freopen("decompose.out","w",stdout);
	get(n);get(Q);get(L);
	rep(2,n,i)add(read(),i);
	rep(1,n,i)rep(1,L,j)get(a[i][j]);
	dfs(1,0);dp(1,1);
	build(1,1,n);
	//wy ww=ask(1,dfn[1],dfn[c[1]]);ll ans=-INF;
	//rep(1,L,i)ans=max(ans,ww.b[1][i]),cout<<ww.b[1][i]<<' ';
	//puts("");putl(ans);
	rep(1,Q,i)
	{
		ll get(x);
		rep(1,L,j)get(a[x][j]);
		Tchange(x);
	}
	return 0;
}
posted @ 2020-06-04 22:06  chdy  阅读(159)  评论(0编辑  收藏  举报