bzoj 1515 [POI2006]Lis-The Postman 有向图欧拉回路
LINK:Lis-The Postman
看完题觉得 虽然容易发现是有向图欧拉回路 但是觉得很难解决这个问题。
先分析一下有向图的欧拉回路:充要条件 图中每个点的入度-出度=0且整张图是一个强连通分量。
证明:首先考虑前者 这个思想是 从一个点出去必然还能回来所以可以形成回路 后者保证了图是联通的。
但是注意观察题目中有一些比较好的条件 每两个点之间的边最多有两条且方向不同。
题目给了k条必须要要连续走的路径 容易想到多条路径可以合并在一起。
这个操作看起来难做 但是 把边进行标号 然后只需要前驱和后继进行合并即可。
判定条件:1 图中原本的点入度-出度=0.2 一条边在一条路径出现两次就是错的 3 一条边有多个前驱后继就是错的。
这样 我们可以把一些边给合并起来了。我们可以要求一走走完这些边。
4 这些边合并在一起后 存在环了那么肯定也走不了。
剩下的就是一个正常的图了 跑欧拉回路即可。
5 在新建的图中再次判断点的出度和入度。
6 最后需要判断图联通与否。
7 判断是否可以从1出发
8 虽然没要求输出方案但是这里点一下 倒序输出点 点和点相连就是边了 更快的方法 输出点的时候可以直接记录将这个点送进来的边是哪个直接输出边。
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000000000ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define S second
#define F first
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define ull unsigned long long
#define ui unsigned
#define EPS 1e-8
#define mod 1000000007
#define sq sqrt
#define l(p) t[p].l
#define r(p) t[p].r
#define op(p) t[p].op
#define cnt(p) t[p].cnt
#define sum(p) t[p].sum
#define zz p<<1
#define yy p<<1|1
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=200010,maxn=50010;
int n,m,len,k,top;
int du[MAXN],w[MAXN],b[MAXN],s[MAXN];
map<int,int>H[maxn];
struct wy{int x,y;}t[MAXN];
int pre[MAXN],ne[MAXN],vis[MAXN];
int lin[MAXN],ver[MAXN],nex[MAXN],fir[MAXN];
inline void add(int x,int y,int w1)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
++du[x];--du[y];
fir[len]=w1;
//cout<<x<<' '<<y<<endl;
}
inline void js(){puts("NIE");exit(0);}
inline void dfs(int x,int fa)
{
for(int &i=lin[x];i;i=nex[i])
{
if(vis[i])continue;
vis[i]=1;
dfs(ver[i],i);
}
s[++top]=fa;
//put(x);
}
int main()
{
//freopen("1.in","r",stdin);
//freopen("1.out","w",stdout);
get(n);get(m);
rep(1,m,i)
{
int get(x),get(y);
t[i]=(wy){x,y};
++du[x];--du[y];
H[x][y]=i;
}
rep(1,n,i)if(du[i])js();
get(k);
rep(1,k,i)
{
int get(x);
int get(las);
rep(1,x-1,j)
{
int get(y);
if(H[las].find(y)==H[las].end())js();
b[j]=H[las][y];
if(w[b[j]]==i)js();
las=y;
}
rep(1,x-2,j)
{
if(!pre[b[j+1]])pre[b[j+1]]=b[j];
else if(pre[b[j+1]]!=b[j])js();
if(!ne[b[j]])ne[b[j]]=b[j+1];
else if(ne[b[j]]!=b[j+1])js();
}
}
int cnt=0;
rep(1,m,i)
if(!pre[i])
{
int j;++cnt;
for(j=i;ne[j];j=ne[j])++cnt;
add(t[i].x,t[j].y,i);
}
if(cnt<m||!lin[1])js();
rep(1,n,i)if(du[i])js();
dfs(1,0);--top;
rep(1,n,i)if(lin[i])js();
puts("TAK");
/*put(t[fir[s[top]]].x);
fep(top,1,i)
{
int j=fir[s[i]];
//put(t[j].x);
do
{
put(t[j].y);
j=ne[j];
}while(j);
}*/
return 0;
}