[BZOJ2216|Luogu P3515] [Poi2011]Lightning Conductor (线性解法)

[BZOJ2216|Luogu P3515] [Poi2011]Lightning Conductor (线性解法)

老题了

问题描述:

给定\(a_i\),求\(f_i=\max_j\{a_j-a_i+\sqrt{|i-j|}\}\)

首先可以分\(j<i\)\(j>i\)两种情况考虑,下面只考虑\(j<i\)的情况

\(g_i(x)=\sqrt{x-i}+a_i\),比较\(g_i(x),g_j(x)(i<j)\)\([j,\infty)\)上的大小关系时时,有几种情况

  1. \(g_i(x)\)恒大于\(g_j(x)\),即\(a_i\ge a_j\)

  2. \(\delta(x)=g_i(x)-g_j(x)\),则\(\displaystyle \delta'(x)=\frac{1}{2\sqrt{x-i}}-\frac{1}{2\sqrt{x-j}}<0\)

    1. \(\delta(0)\leq 0\),则\(g_i(x)\)恒小于\(g_j(x)\)
    2. 求得\(\delta(x)\)的零点,在零点左侧\(g_i(x)\)大,右侧\(g_j(x)\)

容易发现这样函数之间的关系类似直线之间的关系,都是在某一界点处大小关系改变

因此可以像维护直线凸包一样维护\(g_i(x)\)的凸包,再根据查询的单调性完成线性查询

维护凸包时需要求\(g_i(x),g_j(x)(i<j)\)的交点,这个方程大概可以归纳为

\[\sqrt{x+d}-\sqrt{x}=c \]

自然可以在整数域上二分求解这个方程的近似根,但是实际上可以用一点点数学手段\(O(1)\)求解准确根

\(t=\sqrt x\),原方程变为\(\sqrt {y^2+d}-y=c\)

\(y^2+d=y^2+c^2+2cy\Longrightarrow y=\frac{d-c^2}{2c}\)

\(\displaystyle x=(\frac{d-c^2}{2c})^2\)

计算常数略大,我写得也不是很好,所以不算太快

Luogu Submission

char buf[200000],*p1,*p2;
#define getchar() (((p1==p2)&&(p2=(p1=buf)+fread(buf,1,200000,stdin))),*p1++)
int rd(){
	int s=0; static char c;
	while(c=getchar(),c<48);
	do s=(s<<1)+(s<<3)+c-48;
	while(c=getchar(),c>47);
	return s;
}

const int N=5e5+10,INF=1e9+10;

int n;
int a[N],f[N],_sqrt[N];
int Q[N],L,R;

db Cross(int i,int j){
	int d=j-i,c=a[j]-a[i];
	if(1ll*c*c>=d) return -1e90;
	db t=(d-1ll*c*c)/(2.*c);
	return t*t+j;
}
int Get(int i,int j){ return _sqrt[j-i]+a[i]-a[j]; }
void Solve(){
	L=1,R=0;
	rep(i,1,n) {
		while(L<R && i>=Cross(Q[L],Q[L+1])) L++;
		if(L<=R) cmax(f[i],Get(Q[L],i));
		if(L<=R && a[Q[R]]>=a[i]) continue;
		while(L<R && Cross(Q[R-1],Q[R])>=Cross(Q[R],i)) R--;
		Q[++R]=i;
	}
}

void wt(int x){
	if(!x) return (void)putchar('0');
	static char buf[20];
	int l=0;
	while(x) buf[++l]=x%10+'0',x/=10;
	while(l) putchar(buf[l--]);
}

int main(){
	n=rd();
	for(int i=1,t=1;i<=n;++i) _sqrt[i]=t+=i>t*t;
	rep(i,1,n) a[i]=rd();
	Solve();
	reverse(a+1,a+n+1),reverse(f+1,f+n+1);
	Solve();
	drep(i,n,1) wt(f[i]),putchar('\n');
}
posted @ 2021-10-06 14:03  chasedeath  阅读(216)  评论(0编辑  收藏  举报