CF715E - Complete the Permutations

CF715E - Complete the Permutations

题目大意

对于两个排列\(p,q\),令\(p\rightarrow q\)代价为通过交换使得\(p\)变成\(q\)的最小步数

现在部分给定了\(p\)\(q\),求所有情况下,\(p\rightarrow q=i,i\in[0,n-1]\)的排列组数目


分析

排列变换显然要放到置换环上考虑,考虑两个排列之间的变换有多种等价的方式

不妨认为连的边就是\(p_i\rightarrow q_i\),最终操作步数就是\(n-\)置换环的个数

对于已经确定的部分,能够确定的边可以直接连,能够确定的链可以缩成点

那么最终,图上只剩下三种待定的边

\(0\rightarrow 0,0\rightarrow x,x\rightarrow 0\),其中\(0\rightarrow x,x\rightarrow 0\)表示一条出现了一半的边

ps: 如果有\(0\rightarrow x\rightarrow 0\),那么直接缩成一个\(0\rightarrow 0\)看待

不妨设这三种边个数分别为\(A,B,C\),已经确定的环可以数出是\(D\)最后加入答案

由于一个\(A\)由两边确定,实际上确定一个边组之后,排列\(0\rightarrow 0\)的位置得到\(A!\)种方案,也可以最后加入答案

考虑什么样的边可以接成环

仅A:\(0\rightarrow 0,0\rightarrow 0\cdots\)

仅B: \(0\rightarrow x,0\rightarrow x\cdots\)

仅C: \(x\rightarrow 0,x\rightarrow 0,\cdots\)

A+B=A,\(0\rightarrow x+0\rightarrow 0=0\rightarrow 0\)

C+A=A,\(0\rightarrow 0+x\rightarrow 0=0\rightarrow 0\)

实际上,组合环的情况

B前面要么是B要么是A,最终将A后面跟着的小弟B都缩在一起看待

C后面要么是C要么是A,最终将A前面跟着的大哥C都缩在一起看待

实际上B,C计算类似,我们能够得到一个计算思路

将每个B,C加入组合环对于组合环缩点之后的点数无影响,那么可以将A,B,C分离计算

那么考虑一个B要么在单纯的B环上要么在组合环上

枚举有\(i\)\(B\)在单纯B环上,构成\(j\)个环的方案数(当然要先组合数将\(j\)个点选出)

这就是第一类斯特林数\(\begin{bmatrix}i\\j\end{bmatrix}\)参考

剩下的加入组合环中,考虑依次加入每个B,每个B可以接在B后面也可以接在A后面

方案数即\(A^{\overline{B-i}}\),最终计算得到\(G_i\)表示B构成了i个单纯B环的方案数,复杂度为\(O(n^2)\)


A的贡献不需要将组合环和单纯A环分开考虑,直接就是\(F_i=\begin{bmatrix}A\\i\end{bmatrix}\)

最后将三种点背包合并,加入前面提到的常量即可

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a,i##end=b;i<=i##end;++i)
enum{N=300,P=998244353};
int n;
int p[N],q[N],pre[N],nxt[N],A,B,E,D;
int F[N],G[N],H[N],V[N];
int S[N][N],T[N][N],C[N][N];
int main(){
	scanf("%d",&n);
	rep(i,1,n) pre[i]=nxt[i]=-1;
	rep(i,**S=1,n) rep(j,1,i) S[i][j]=(S[i-1][j-1]+1ll*(i-1)*S[i-1][j])%P;
	rep(i,0,n) rep(j,*T[i]=1,n) T[i][j]=1ll*T[i][j-1]*(i+j-1)%P;
	rep(i,0,n) rep(j,*C[i]=1,i) C[i][j]=(C[i-1][j]+C[i-1][j-1])%P;
	rep(i,1,n) scanf("%d",p+i);
	rep(i,1,n) {
		scanf("%d",q+i);
		if(p[i] && q[i]) nxt[p[i]]=q[i],pre[q[i]]=p[i];
		else if(p[i]) nxt[p[i]]=0;
		else if(q[i]) pre[q[i]]=0;
	}
	rep(i,1,n) if(pre[i]<=0) {
		int j=i;
		for(;nxt[j]>0;j=nxt[j]) V[j]=1;
		V[j]=1;
		if(pre[i]==nxt[j]) A+=pre[i]==-1; // ==0 || ==-1 ,but we can't count 0 in 
		else if(~pre[i]) B++;
		else E++;
	}
	rep(i,1,n) if(!V[i]) {
		for(int j=i;!V[j];j=nxt[j]) V[j]=1;
		D++;
	}
	int c=1;
	rep(i,1,A) c=1ll*c*i%P;
	rep(i,0,A) F[i]=1ll*c*S[A][i]%P;
	rep(i,0,B) rep(j,0,i) G[j]=(G[j]+1ll*S[i][j]*T[A][B-i]%P*C[B][i])%P;
	rep(i,0,E) rep(j,0,i) H[j]=(H[j]+1ll*S[i][j]*T[A][E-i]%P*C[E][i])%P;
	
	rep(i,0,n) V[i]=0;
	rep(i,0,A) rep(j,0,B) V[i+j+D]=(V[i+j+D]+1ll*F[i]*G[j])%P;
	rep(i,0,n) F[i]=0;
	rep(i,0,A+B+D) rep(j,0,E) F[n-i-j]=(F[n-i-j]+1ll*V[i]*H[j])%P;
	rep(i,0,n-1) printf("%d ",F[i]);
}

进一步的优化?

\(F_i\)的计算时标准的第一类斯特林数行,用倍增法求上升幂即可

\(\displaystyle G(x)=\sum_{i=0}^B A^{\overline{B-i}}\binom{B}{i} x^{\overline{i}}\)

把系数拿出来,可以直接做一个上升幂多项式转普通多项式

复杂度为\(O(n\log ^2n)\)

(听说可以\(O(n\log n)\)但是我没有脑子只会套板子哈哈哈哈

posted @ 2021-05-12 20:07  chasedeath  阅读(81)  评论(1编辑  收藏  举报