求导/泰勒展开

求导/泰勒展开

前言:求导是为泰勒展开铺路的。。

求导

\(f'(x)\)\(f(x)\)的导数,即\(f(x)\)\(x\)上的变化率

\(\begin{aligned} f'(x)=\lim_{\Delta x\rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}\end{aligned}\)

\(f(x)\)\(x\)上可导的前提是\(f(x)\)\(x\)上是连续的

一种不完善的判定条件是\(\begin{aligned} \lim_{\Delta x\rightarrow 0^+} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim_{\Delta x\rightarrow 0^+} \frac{f(x)-f(x-\Delta x)}{\Delta x}\end{aligned}\)

\[\ \]

求导法则

\(1.(x^n)'=n \cdot x^{n-1}\)\((n\in \R\),但是要注意定义域)

\(2.(\sin x)'=\cos x,(\cos x)'=-\sin x\)

\(3.(e^x)'=e^x\)

\(4.(a^x)'=\ln a\cdot a^x\)

\(5.(\ln x)'=\frac{1}{x}\)

\(6.\log_a x=\frac{1}{x\ln a}\)

\(7.(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)\)

\(8.\displaystyle (\frac{f(x)}{g(x)})'=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}\)

\(9.(f(g(x)))'=f'(g(x))\cdot g'(x)\)

\(f(x)=\ln x,g(x)=ax-1\)

\(f'(x)=\frac{1}{x},f'(g(x))=\frac{1}{ax-1}\)

\(g'(x)=a\)

\((\ln (ax-1))'=\frac{a}{ax-1}\)

$$ \ $$

泰勒 Taylor 展开

\(\text{Taylor}\)展开是用函数\(f(x)\)在某个点\(x_0\)上不断求导之后的函数值表示出函数本身

从而将任何一个函数表示成(可能不是有穷的)多项式函数形式

\(\begin{aligned} f(x)=\sum _{i=0}^{\infty}\frac{f^{(i)}(x_0)}{i!}(x-x_0)^i\end{aligned}\)

其中\(f^{(i)}\)表示\(f\)\(i\)阶导数

\(x_0=0\)时,这个展开被称为麦克劳林 \(\text{Maclaurin}\)展开,即

\(\begin{aligned} f(x)=\sum _{i=0}^{\infty}\frac{f^{(i)}(0)}{i!}x^i\end{aligned}\)

Taylor 展开的证明

为了便于描述,下面直接对于\(\text{Maclaurin}\) 展开叙述 , \(\text{Taylor}\)展开相当于平移了\(x_0\)

不妨设\(f(x)\)展开后的多项式函数系数为\(a_i\),即设\(\begin{aligned} f(x)=\sum_{i=0}^{\infty}a_ix^i\end{aligned}\)

不断对于\(f(x)\)求导得到下式

\(\begin{aligned} f^{(0)}(x)= a_0+a_1x+a_2x^2+a_3x^3\cdots \end{aligned}\)

\(\begin{aligned} f^{(1)}(x)= a_1+2a_2x+3a_3x^2+4a_4x^3\cdots \end{aligned}\)

\(\begin{aligned} f^{(2)}(x)= 2a_2+6a_3x^1+12a_4x^2+20a_5x^3\cdots \end{aligned}\)

\(\cdots\)

\(\begin{aligned} f^{(n)}(x)= n!a_n+\prod_{i=2}^{n+1}i\cdot a_{n+1}x^1+\prod_{i=3}^{n+2}i\cdot a_{n+2}x^2\cdots \end{aligned}\)

带入这些函数在0上的取值,得到

\(f^{(i)}(0)=i!\cdot a_i\)

因此\(\begin{aligned} f(x)=a_ix^i=\sum _{i=0}^{\infty}\frac{f^{(i)}(0)}{i!}x^i\end{aligned}\)

\[\ \]

常见的Taylor展开

如果你是数学生

\(\displaystyle e^x= 1+x+\frac{x^2}{2}+\ldots+ \frac{x^n}{n!}+\theta\frac{x^{n+1}}{(n+1)!},\theta\in (0,1)\)

所以实际上是

\(\left\{\begin{aligned}e^x\ge 1+x+\frac{x^2}{2}+\ldots+\frac{x^n}{n!}&& 2\not |n\text{ or }\ge 0\\ e^x\leq 1+x+\frac{x^2}{2}+\ldots+\frac{x^n}{n!}&& \text{otherwise}\end{aligned}\right.\)

\(\ln x\leq x-1\)

诸如此类,常用于\(e^x,\ln x\)的放缩处理

\[\ \]

如果你是OIer/ACMer

带入\(f(x)=e^x,x_0=0\),得到

\(\begin{aligned} f(x)=e^x=\sum _{i=0}^{\infty}\frac{x^i}{i!}\end{aligned}\)

类似的

\[1+\frac{x^2}{2!}+\frac{x^4}{4!}+\frac{x^6}{6!} ... =\frac{e^x+e^{-x}}{2} \]

\[\frac{x^1}{1!}+\frac{x^3}{3!}+\frac{x^5}{5!}...=\frac{e^x-e^{-x}}{2} \]

\(\displaystyle [x^n]e^{ax}=\frac{a^n}{n!}\)

还有很多都可以自己代入一下,比如

\(\begin{aligned} \frac{1}{1-x}=\sum_{i=0}^{\infty} x^i\end{aligned}\)

\(\begin{aligned} -\ln (1-x)=\ln \frac{1}{1-x}=\sum_{i=1}^{\infty}\frac{x^i}{i}\end{aligned}\)

\(\begin{aligned}\sin x =\sum_{i=1}(-1)^{i+1}\frac{x^{2i+1}}{(2i+1)!}\end{aligned}\)

\(\begin{aligned}\cos x=\sum_{i=0}(-1)^{i}\frac{x^{2i}}{(2i)!}\end{aligned}\)

应用:牛顿迭代法

posted @ 2020-04-29 17:33  chasedeath  阅读(2848)  评论(0编辑  收藏  举报