[BZOJ3195] [Jxoi2012]奇怪的道路
[BZOJ3195] [Jxoi2012]奇怪的道路
图论是不可能的
题目限定了距离,所以直接按点编号的顺序dp下来,记录连了几条边,之前的点每个点的所连边数是不是奇数
每个点转移时就是向之前的点连边,保证最后能连的边连完每个点都满足条件即可
const int N=80,P=1000000007;
int n,m,k;
ll dp[31][1<<8][31];
ll C[N][N];
int main(){
n=rd(),m=rd(),k=rd();
k=min(k,n);
C[0][0]=1;
rep(i,1,N-1) {
C[i][0]=1;
rep(j,1,N-1) C[i][j]=(C[i-1][j-1]+C[i-1][j])%P;
}
dp[0][0][0]=1;
rep(i,1,k-1) {
int A=(1<<i)-1;
rep(S,0,A) {
int t=0;
rep(j,0,i-1) if(S&(1<<j)) t++;
rep(R,0,A) {
int NS=(S^R)|((t&1)<<i);
rep(j,0,m) {
for(reg int d=j+t;d<=m;d+=2) {
(dp[i][NS][d]+=C[(d-j-t)/2+i-1][i-1]*dp[i-1][R][j]%P)%=P;
}
}
}
}
}
int A=(1<<k)-1;
rep(i,k,n-1) {
rep(S,0,A) {
int t=0;
rep(j,0,k-1) if(S&(1<<j)) t++;
rep(R,0,A) if((R&1)==(S&1)) { // 保证最前面那个点连完之后是偶数
int NS=((S^R)>>1)|((t&1)<<(k-1));
rep(j,0,m) {
for(reg int d=j+t;d<=m;d+=2) {
(dp[i][NS][d]+=C[(d-j-t)/2+k-1][k-1]*dp[i-1][R][j]%P)%=P;
}
}
}
}
}
ll ans=dp[n-1][0][m];
printf("%lld\n",ans);
}