多线程
1.进程
进程是指在系统中正在运行的一个应用程序。负责程序运行的内存分配。
每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内。
2.线程
一个进程要想执行任务,必须得有线程(每一个进程至少要有一个线程)。
线程是进程的基本执行单元,一个进程(线程)的所有任务都在线程中执行。
一个线程中任务的执行是串行(顺序执行)的。
在同一时间内,一个线程只能执行一个任务。
线程是进程中的一条执行路径。
一个进程中至少包含一条线程,即主线程。
可以将耗时的执行路径(如网络请求)放在其他线程中执行。
线程不能被杀掉,但可以暂停/休眠一条线程。
1) 创建线程的目的:
开启一条新的执行路径,运行指定的代码,与主线程中的代码实现同时运行。
2) 多任务调度
每个应用程序由操作系统分配的短暂时间片(Timeslice)轮流使用CPU,由于CPU对每个时间片的处理速度非常快,因此,用户看来这些任务好像是同时执行的。
3) 并发:
指两个或多个任务在同一时间间隔内发生,但是,在任意一个时间点上,CPU只会处理一个任务。
3.多线程
一个进程中可以开启多条线程,每条线程可以并发(同时)执行不同的任务。
多线程技术可以提供程序的执行效率。
4.多线程的原理
同一时间,CPU只能处理一条线程,只有一条线程在工作(执行)。
多线程并发(同时)执行,其实就是CPU快速的在多条线程之间调度(切换)。
如果CPU调度线程的时间足够快,就造成了多线程并发执行的假象。
5.如果线程非常多,会发生什么情况?
线程太多,会造成CPU负担,会卡顿。
CPU会在N多线程之间调度,消耗大量的CPU资源。
每条线程被调度执行的频次会降低(线程的执行效率降低)。
6.多线程的优点
能适当提供程序的执行效率。
能适当提高资源利用率(CPU、内存利用率)。
当硬件处理器的数量增加,程序会运行更快,而程序无需做任何调整。
7.多线程的缺点
开启线程需要占用一定的内存空间(默认情况下,主线程占用1M,子线程占用512KB),如果开启大量的线程,会占用大量的内存空间,降低程序的性能。
线程越多,CPU在调度线程上的开销就越大。
程序设计更加复杂:比如线程之间的通信、多线程的数据共享。
8.什么是主线程?
一个iOS程序运行之后,默认会开启一条线程,称为“主线程”或“UI线程”。
主线程的主要作用
显示/刷新UI界面。
处理UI事件(比如点击事件,滚动事件,退拽事件等)。
9.主线程的使用注意
别将耗时的操作放在主线程。
耗时操作会卡住主线程,严重影响UI的流畅度,给用户一种“卡”的坏体验。
10.耗时操作的执行
不开启新线程的情况下,会占用主线程,导致UI界面无响应。
如果将耗时操作放在子线程(后台线程、非主线程)。
/*将耗时操作放到子线程执行,会开辟一个子线程,并且在子线程执行@selector(longTimeOperation)里面的方法,后面传递参数
*/
[selfperformSelectorInBackground:@selector(longTimeOperation) withObject:nil];
11.使用线程:
//获得当前线程,在开发中经常打印。所有多线程技术都能使用这个方法。
[NSThread currentThread];
12.多线程实现
13. iOS的三种多线程技术特点:
1)NSThread:
1> 使用NSThread对象建立一个线程非常方便;
2> 但是!要使用NSThread管理多个线程非常困难,不推荐使用;
3> 技巧!使用[NSThreadcurrentThread]跟踪任务所在线程,适用于这三种技术.
2)NSOperation/NSOperationQueue:
1> 是使用GCD实现的一套Objective-C的API;
2> 是面向对象的多线程技术;
3> 提供了一些在GCD中不容易实现的特性,如:限制最大并发数量,操作之间的依赖关系.
3)GCD---Grand CentralDispatch:
1> 是基于C语言的底层API;
2> 用Block定义任务,使用起来非常灵活便捷;
3> 提供了更多的控制能力以及操作队列中所不能使用的底层函数.
iOS的开发者需要了解三种多线程技术的基本使用,因为在实际开发中会根据实际情况选择不同的多线程技术.
14. GCD
1)基本思想
GCD的基本思想就是将操作S放在队列S中去执行.
1> 操作使用Blocks定义;
2> 队列负责调度任务执行所在的线程以及具体的执行时间;
3> 队列的特点是先进先出(FIFO)的,新添加至队列的操作都会排在队尾.
2)提示:
GCD的函数都是以dispatch(分派/调度)开头的.
3)队列:
dispatch_queue_t
串行队列: 队列中的任务只会顺序执行;
并行队列: 队列中的任务通常会并发执行.
4)操作:
dispatch_async 异步操作,会并发执行,无法确定任务的执行顺序;
dispatch_sync 同步操作,会依次顺序执行,能够决定任务的执行顺序.
队列不是线程,也不表示对应的CPU.队列就是负责调度的.多线程技术的目的,就是为了在一个CPU上实现快速切换!
在串行队列中:
同步操作不会新建线程,操作顺序执行(没用!);
异步操作会新建线程,操作顺序执行(非常有用!) (应用场景:既不影响主线程,又需要顺序执行的操作).
在并行队列中:
同步操作不会新建线程,操作顺序执行;
异步操作会新建多个线程,操作无序执行(有用,容易出错),队列前如果有其他任务,会等待前面的任务完成之后再执行.应用场景:既不影响主线程,又不需要顺序执行的操作.
全局队列:
全局队列是系统的,直接拿过来(GET)用就可以,与并行对立类似,但调试时,无法确认操作所在队列.
主队列:
每一个应用程序都对应唯一一个主队列,直接GET即可,在多线程开发中,使用主队列更新UI;
注意:
主队列中的操作都应该在主线程上顺序执行,不存在异步的概念.
如果把主线程中的操作看作是一个大的Block,那么除非主线程被用户杀掉,否则永远不会结束.所以主队列中添加的同步操作永远不会被执行,会死锁.
5)不同队列中嵌套同步操作dispatch_sync的结果:
// 全局队列,都在主线程上执行,不会死锁
dispatch_queue_t q = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
// 并行队列,都在主线程上执行,不会死锁
dispatch_queue_t q = dispatch_queue_create("m.baidu.com", DISPATCH_QUEUE_CONCURRENT);
// 串行队列,会死锁,但是会执行嵌套同步操作之前的代码
dispatch_queue_t q = dispatch_queue_create("m.baidu.com", DISPATCH_QUEUE_SERIAL);
// 直接死锁
dispatch_queue_t q = dispatch_get_main_queue();
6)同步操作dispatch_sync的应用场景:
阻塞并行队列的执行,要求某一操作执行后再进行后续操作,如用户登录.
确保块代码之外的局部变量确实被修改.
[NSThreadsleepForTimeInterval:2.0f] 通常在多线程调试中用于模拟耗时操作,在发布的应用程序中,不要使用此方法!
无论什么队列和什么任务,线程的创建和回收都不需要程序员参与.线程的创建回收工作是由队列负责的.
7)GCD优点:
1> 通过GCD,开发者不用再直接跟线程打交道,只需要向队列中添加代码块即可.
2> GCD在后端管理着一个线程池,GCD不仅决定着代码块将在哪个线程被执行,它还根据可用的系统资源对这些线程进行管理,从而让开发者从线程管理的工作中解放出来;通过集中的管理线程,缓解大量线程被创建的问题.
3> 使用GCD,开发者可以将工作考虑为一个队列,而不是一堆线程,这种并行的抽象模型更容易掌握和使用.
8)GCD队列:
苹果官方给出的GCD队列示意图:
从中可以看出: GCD公开有5个不同的队列:运行在主线程中的主队列,3个不同优先级的后台队列以及一个优先级更低的后台队列(用于I/O).
自定义队列:串行和并行队列.自定义队列非常强大,建议在开发中使用.
在自定义队列中被调度的所有Block最终都将被放入到系统的全局队列中和线程池中.
提示:
不建议使用不同优先级的队列,因为如果设计不当,可能会出现优先级反转,即低优先级的操作阻塞高优先级的操作.
15. NSOperation&NSOperationQueue
1)简介:
1>NSOperationQueue(操作队列)是由GCD提供的队列模型的Cocoa抽象,是一套Objective-C的API;
2> GCD提供了更加底层的控制,而NSOperationQueue(操作队列)则在GCD之上实现了一些方便的功能,这些功能对开发者而言通常是最好最安全的选择.
2)队列及操作:
NSOperationQueue有两种不同类型的队列:主队列和自定义队列.
主队列运行在主线程上,自定义队列在后台执行.
队列处理的任务是NSOperation的子类:NSInvocationOperation和 NSBlockOperation.
3)NSOperation的基本使用步骤:
定义操作队列 -->定义操作 -->将操作添加到队列.
提示:
一旦将操作添加到队列,操作就会立即被调度执行.
1) NSInvocationOperation(调度操作)
1> 定义队列:
self.myQueue = [[NSOpertaionQueue alloc] init];
2> 操作调用的方法:
-(void)operationAction:(id)obj
{
NSLog(@"%@----obj : %@ ",[NSThread currentThread], obj);
};
3> 定义操作并添加到队列:
NSInvocationOperation *op = [[NSInvocationOperation alloc] initWithTarget:self selector:@selector(operationAction:) object:@(i)];
[self.myQueue addOperation:op]
提示:需要准备一个被调度的方法,并且能够接收一个参数.
5)NSBlockOperation(块操作)
定义操作并添加到队列:
NSBlockOperation *op = [NSBlockOperation blockOperationWithBlock:^{
[self operationAction:@"Block Operation"];
}];
[self.myQueue addOperation:op];
NSBlockOperation比NSInvocationOperation更加灵活;
设置操作的依赖关系:
利用 "addDependency "可以指定操作之间彼此的依赖关系(执行先后顺序),但是注意不要出现循环依赖.
设置同时并发的线程数量:
[self.myQueue setMaxConcurrentOperationCount:2];
6)NSOperation小结:
从本质上看,操作队列的性能会比GCD略低,不过,大多数情况下这点负面影响可以忽略不计.操作队列是并发编程的首选工具.
在这里,推荐一个非常好用的第三方编程框架AFN,底层用GCD开发,开发的接口是NSOperation的.
多线程中得循环引用问题:
如果self对象持有操作对象的引用,同时操作对象当中又直接访问了self时,才会造成循环引用.
单纯在操作对象中使用self不会造成循环引用.
注意: 此时不要使用[weakSelf].
多线程中的资源共享问题:
并发编程中许多问题的根源就是在多线程中访问共享资源.资源可以是一个属性,一个对象,网络设备或者一个文件等.
在多线程中任何一个共享的资源都可能是一个潜在的冲突点,必须精心设计以防止这种冲突的发生.
为了保证性能,atomic仅针对属性的setter方法做了保护.
争抢共享资源时,如果涉及到属性的getter方法,可以使用互斥锁(@synchronized)可以保证属性在多个线程之间的读写都是安全的.
无论是atomic还是@synchronized,使用的代价都是高昂的.
建议:
多线程是并发执行多个任务提高效率的,如果可能,应该在线程中避免争抢共享资源.
正是出于性能的考虑,UIKit中的绝大多数类都不是线程安全的,因此,苹果公司要求:更新UI相关的操作,应该在主线程中执行.
16. NSObject的多线程方法
1> 开启后台执行任务的方法:
- (void)performSelectorInBackground:(SEL)@Selector withObject:(id)arg
2> 在后台线程中通知主线程执行任务的方法:
- (void)performSelectorOnMainThread:(SEL)@Selector withObject:(id)arg waitUntilDone:(BOOL)wait
3> 获取线程信息:
[NSThread currentThread];
4> 线程休眠:
[NSThread sleepForTimeInterval:2.0f];
特点:
1> 使用简单,轻量级;
2> 不能控制线程的数量以及执行顺序.
NSObject的多线程方法注意事项:
1> NSObject的多线程方法使用的是NSThread的多线程技术.
2> NSThread的多线程技术不会自动使用@autoreleasepool.
在使用NSObject或NSThread的多线程技术时,如果涉及到对象分配,需要手动添加@autoreleasepool.