Listen、Attention、Spell模型

LAS是一个做语音识别的经典seq2seq模型,主要分为三个部分Listen、Attention、Spell

Listen

Listen部分就是一个encoder。
输入声学特征向量,提取信息、消除噪声,输出向量。
在这里插入图片描述
encoder可以是RNN
在这里插入图片描述
也可以是CNN。比较常见的是先用CNN,再用RNN
在这里插入图片描述
还有一种趋势是使用Self-Attention
在这里插入图片描述

Down Sampling减少取样

由于声音的采集通常都是很大数据量的。比如采样率为16KHz需要在一秒钟采集16000个采样点,所以通常需要对声音的特征向量进行Down Sampling,减少样本数。

对于RNN,
方法一是通过使用两层RNN,4个向量通过第一层RNN输出4个向量,通过第二个RNN输出2个向量
方法二是把通过RNN输出的四个向量中,每隔一个输出向量
在这里插入图片描述

对于CNN,使用TDNN的方法,可以认为一段附近的几个特征向量差不多,采取使用第一个和最后一个向量,减少样本参数。

对于Self-Attention,计算当前向量和所有向量(1秒16K)计算量太大,只计算一个范围内的注意力。
在这里插入图片描述

Attention

我们可以直接编码解码之后直接输出,但是我们当前的编码解码不仅限于这一个编码向量,还取决于周围的编码向量,所以要做attention。

注意力机制如下图所示。 z z z是待训练的向量,初始时随机初始化, z z z与每个 h h h做match得到注意力分数 α α α
match的方法有两种,一种是Dot-product,另一种是Addictive。
在这里插入图片描述
在这里插入图片描述
做完match之后,每个 h h h的注意力分数 α α α做softmax,然后对应比例的h相乘相加,得到向量 c c c c 0 c^{0} c0作为decoder(Spell)的输入。
在这里插入图片描述

Spell

c 0 c^{0} c0作为decoder的输入
随机初始化的 z 0 z^{0} z0经过训练之后得到 z 1 z^{1} z1 z 1 z^{1} z1作为RNN的隐状态输入
通过RNN,输出|V|维向量经过Softmax,输出最大概率的token。
在这里插入图片描述
z 1 z^{1} z1作为待训练的向量,与每个 h h h做attention,得到 c 1 c^{1} c1作为输入
把得到的Token加入RNN网络, z 1 z^{1} z1训练后得到的 z 2 z^{2} z2作为隐状态,训练得到下一个Token
在这里插入图片描述

posted @ 2022-11-28 13:56  ︶ㄣ演戲ㄣ  阅读(6)  评论(0编辑  收藏  举报  来源