GENIE代码

image

image

D:\app\work_app\anaconda3\local\envs\ProphetNet-master\python.exe C:\Users\PC\Desktop\GENIE\Genie_Finetune.py --checkpoint_path=output --model_channels 128 --in_channel 128 --out_channel 128 --vocab_size 30522 --config_name=bert-base-uncased --token_emb_type=random --model_arch=s2s_CAT --diffusion_steps 2000 --predict_xstart --noise_schedule=sqrt --training_mode=s2s --schedule_sampler=loss-second-moment --tgt_max_len 64 --src_max_len 512 --data_name=cnndm_data --data_path=data --lr_anneal_steps 120000 --batch_size 64 --lr 5e-05 --warmup_steps 7200 --train_type=S2S_Diffusion --eval_interval 200 --log_interval 200 --save_interval 20000 --pretrain_model_path=pretrain_ckpt/GENIE_ckpt-cnndm.ckpt 
Logging to C:\Users\PC\AppData\Local\Temp\openai-2023-07-06-16-30-45-715447
saving the hyperparameters to output/training_args.json
Logging to output\log.txt
creating model, based on s2s_CAT
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['bert.encoder.layer.6.attention.output.LayerNorm.weight', 'bert.encoder.layer.9.attention.output.dense.bias', 'bert.encoder.layer.11.output.LayerNorm.bias', 'bert.encoder.layer.9.output.dense.weight', 'bert.encoder.layer.9.intermediate.dense.weight', 'bert.encoder.layer.6.attention.self.key.bias', 'bert.encoder.layer.11.attention.self.value.weight', 'bert.encoder.layer.6.output.LayerNorm.bias', 'bert.encoder.layer.8.output.LayerNorm.bias', 'bert.encoder.layer.8.attention.output.LayerNorm.bias', 'bert.encoder.layer.10.intermediate.dense.bias', 'bert.encoder.layer.11.attention.self.key.bias', 'bert.encoder.layer.8.intermediate.dense.weight', 'bert.encoder.layer.7.output.dense.weight', 'bert.encoder.layer.6.attention.self.query.weight', 'bert.encoder.layer.10.attention.self.value.bias', 'bert.encoder.layer.6.output.LayerNorm.weight', 'bert.encoder.layer.8.attention.output.LayerNorm.weight', 'bert.encoder.layer.11.attention.output.LayerNorm.weight', 'bert.encoder.layer.7.attention.output.LayerNorm.bias', 'bert.encoder.layer.8.attention.output.dense.weight', 'bert.encoder.layer.6.attention.self.key.weight', 'bert.encoder.layer.8.output.dense.bias', 'bert.encoder.layer.7.attention.self.query.bias', 'bert.encoder.layer.7.output.LayerNorm.weight', 'bert.encoder.layer.8.attention.self.query.weight', 'bert.encoder.layer.9.attention.self.value.weight', 'bert.encoder.layer.6.attention.output.dense.bias', 'bert.encoder.layer.9.output.LayerNorm.bias', 'bert.encoder.layer.8.attention.self.key.weight', 'bert.encoder.layer.8.intermediate.dense.bias', 'bert.encoder.layer.6.intermediate.dense.bias', 'bert.encoder.layer.10.attention.output.LayerNorm.bias', 'bert.encoder.layer.11.attention.output.dense.bias', 'bert.encoder.layer.7.attention.self.value.bias', 'bert.encoder.layer.8.output.dense.weight', 'bert.encoder.layer.7.output.dense.bias', 'bert.encoder.layer.10.attention.output.dense.bias', 'bert.encoder.layer.9.attention.self.key.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.weight', 'bert.encoder.layer.11.attention.self.query.bias', 'cls.predictions.transform.dense.bias', 'bert.encoder.layer.9.attention.output.dense.weight', 'bert.encoder.layer.7.intermediate.dense.weight', 'bert.encoder.layer.10.attention.output.dense.weight', 'bert.encoder.layer.9.attention.self.key.bias', 'bert.encoder.layer.10.output.dense.weight', 'bert.encoder.layer.6.attention.output.LayerNorm.bias', 'bert.encoder.layer.11.output.dense.weight', 'bert.encoder.layer.11.attention.self.query.weight', 'bert.encoder.layer.9.attention.self.query.bias', 'bert.encoder.layer.11.output.dense.bias', 'bert.encoder.layer.10.attention.self.value.weight', 'bert.encoder.layer.10.attention.output.LayerNorm.weight', 'bert.encoder.layer.7.attention.self.key.weight', 'bert.encoder.layer.9.intermediate.dense.bias', 'bert.encoder.layer.11.attention.output.dense.weight', 'bert.encoder.layer.7.output.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.bias', 'bert.encoder.layer.8.attention.self.value.weight', 'bert.encoder.layer.10.attention.self.key.weight', 'bert.encoder.layer.9.attention.output.LayerNorm.weight', 'bert.encoder.layer.11.intermediate.dense.bias', 'bert.encoder.layer.9.attention.self.query.weight', 'cls.predictions.bias', 'bert.encoder.layer.6.output.dense.weight', 'bert.encoder.layer.8.attention.self.query.bias', 'bert.encoder.layer.10.attention.self.query.bias', 'bert.encoder.layer.6.attention.output.dense.weight', 'bert.encoder.layer.9.attention.output.LayerNorm.bias', 'bert.encoder.layer.8.output.LayerNorm.weight', 'bert.encoder.layer.7.attention.self.query.weight', 'bert.encoder.layer.11.attention.output.LayerNorm.bias', 'bert.encoder.layer.10.attention.self.key.bias', 'cls.seq_relationship.weight', 'bert.encoder.layer.7.attention.output.dense.weight', 'bert.encoder.layer.10.output.LayerNorm.bias', 'bert.encoder.layer.9.attention.self.value.bias', 'bert.encoder.layer.6.attention.self.value.bias', 'bert.encoder.layer.10.attention.self.query.weight', 'bert.encoder.layer.7.attention.output.LayerNorm.weight', 'bert.encoder.layer.8.attention.self.value.bias', 'bert.encoder.layer.9.output.LayerNorm.weight', 'bert.encoder.layer.10.output.dense.bias', 'bert.encoder.layer.6.attention.self.value.weight', 'bert.encoder.layer.7.intermediate.dense.bias', 'bert.encoder.layer.8.attention.output.dense.bias', 'bert.encoder.layer.6.attention.self.query.bias', 'bert.encoder.layer.6.intermediate.dense.weight', 'bert.encoder.layer.7.attention.output.dense.bias', 'cls.seq_relationship.bias', 'bert.encoder.layer.11.intermediate.dense.weight', 'bert.encoder.layer.7.attention.self.key.bias', 'bert.encoder.layer.7.attention.self.value.weight', 'bert.encoder.layer.11.attention.self.key.weight', 'bert.encoder.layer.11.output.LayerNorm.weight', 'bert.encoder.layer.10.intermediate.dense.weight', 'bert.encoder.layer.6.output.dense.bias', 'bert.encoder.layer.11.attention.self.value.bias', 'bert.encoder.layer.8.attention.self.key.bias', 'bert.encoder.layer.9.output.dense.bias', 'bert.encoder.layer.10.output.LayerNorm.weight']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
BertConfig {
  "architectures": [
    "BertForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "classifier_dropout": null,
  "gradient_checkpointing": false,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 0,
  "position_embedding_type": "absolute",
  "transformers_version": "4.30.2",
  "type_vocab_size": 2,
  "use_cache": true,
  "vocab_size": 30522
}

noise_schedule:  sqrt
Diffusion Steps:  2000
betas:  [0.01464131 0.00888909 0.00706818 ... 0.35722328 0.55561113 0.999     ]
Diffusion Loss Type:  LossType.E2E_MSE   , Whether to learn sigma:  False
Diffusion predict xstart:  True
training mode is  s2s
load model ckpt at : pretrain_ckpt/GENIE_ckpt-cnndm.ckpt
Reading saved model from %s pretrain_ckpt/GENIE_ckpt-cnndm.ckpt
model_state_dict keys %s odict_keys(['model_dict', 'optimizer_dict', 'scheduler_dict', 'offset'])
the parameter count is 143983034
using loss-second-moment time schedule sampler
loading tokenizer...
***** load cnndm_data train src dataset*****
287113it [00:01, 214791.14it/s]
***** load cnndm_data train tgt dataset*****
287113it [00:00, 1882824.06it/s]
example of src text:  ( CNN ) - - China has suspended exports of the A ##qua Dot ##s toys contaminated with a chemical that can convert to a powerful " date rape " drug , the state - run Xi ##nh ##ua news agency reported Saturday . The toys have caused some children who swallowed the craft toys to vomit and lose consciousness . [SEP_0] China suspended exports of the A ##qua Dot ##s toys that contain a chemical that converts into a " date rape " drug . [SEP_1] The agency said that the General Administration of Quality Super ##vision , In ##spect ##ion , and Q ##ua ##rant ##ine ( A ##Q ##SI ##Q ) has ordered an investigation by quality control agencies and will release results as soon as they are available . [SEP_2] The A ##Q ##SI ##Q did not reveal the name of the toys ' producer , Xi ##nh ##ua said . [SEP_3] U . S . safety officials voluntarily recalled about 4 . 2 million of the Chinese - made toys Wednesday . [SEP_4] Scientists have found the highly popular holiday toy contains a chemical that , once meta ##bol ##ized , converts into the toxic " date rape " drug G ##H ##B ( gamma - h ##ydro ##xy but ##yra ##te ) , Scott Wolf ##son , a spokesman with the U . S . Consumer Product Safety Commission ( CP ##SC ) , told CNN . [SEP_5] " Children who swallow the beads can become coma ##tos ##e , develop respiratory depression or have seizure ##s , " a CP ##SC statement warned . [SEP_6] The arts - and - craft beads , which have been selling since April at major U . S . retail stores under the name " A ##qua Dot ##s , " have also been distributed in Australia under the name " Bin ##de ##ez Be ##ads . " [SEP_7] The Bin ##de ##ez toys were recalled Tuesday by Melbourne - based Moose Enterprise P ##ty . Ltd . after three children in Australia swallowed large quantities of the beads and were hospital ##ized . [SEP_8] " I was so frightened because I thought she wasn ' t going to make it , " Heather Le ##hane told CNN affiliate Network 7 of her 10 - year - old daughter , Charlotte , who was hospital ##ized in Australia after ing ##est ##ing some of the beads . [SEP_9] In the United States , the Washington - based safety commission said it has in recent days received two reports detailing the severe effects of the dig ##ested beads , which are part of a craft kit aimed at kids 4 years and older . [SEP_9] The CP ##SC said a boy nearly 2 years old " swallowed several dozen beads . He became dizzy and vomit ##ed several times before slipping into a coma ##tos ##e state for a period of time . " [SEP_9] The commission said the to ##ddler was hospital ##ized and has since " fully recovered . " [SEP_9] The second incident involved a child who vomit ##ed , fell into a coma and was hospital ##ized for five days . It was not immediately clear whether the child had made a full recovery . [SEP_9] Toronto - based toy distributor Spin Master Ltd . stopped shipping the A ##qua Dot ##s toys and asked retailers to pull them off their shelves , where they were previously sold for $ 17 to $ 30 . [SEP_9] Anyone with A ##qua Dot ##s at home should return the product to the company , CP ##SC spoke ##s ##woman Julie Valle ##se said . [SEP_9] The toy had been named toy of the year in Australia and recently crest ##ed W ##al - Mart ' s list of top 12 Christmas toys . [SEP_9] W ##al - Mart on Thursday listed the toys on its Web site as " out of stock online " and had removed them from their top toy list as well . [SEP_9] This latest recall is part of a larger batch of recalls of Chinese - made toys that have swept across the country . [SEP_9] Last month alone , U . S . government safety officials and retailers voluntarily recalled at least 69 , 000 Chinese - made toys over concerns of excessive amounts of lead paint , which can cause hazardous lead poisoning . E - mail to a friend . [SEP_9] CNN ' s Jan ##ine Brady , Jason Carroll , Laura Do ##lan , Julie O ' Neill and Leslie W ##ig ##gins contributed to this report .
example of tgt text:  State - run news agency : China orders an investigation by quality control agencies . [X_SEP] Children who swallow the beads can become coma ##tos ##e or have seizure ##s . [X_SEP] Toy ##s are sold as A ##qua Dot ##s in the U . S . , as Bin ##de ##ez Be ##ads in Australia . [X_SEP] Three children were hospital ##ized in Australia after swallowing large quantities .
example of src id lists:  tensor([[  101,  1006, 13229,  1007,  1011,  1011,  2859,  2038,  6731, 14338,
          1997,  1996,  1037,  1001,  1001, 24209,  2050, 11089,  1001,  1001,
          1055, 10899, 19450,  2007,  1037,  5072,  2008,  2064, 10463,  2000,
          1037,  3928,  1000,  3058,  9040,  1000,  4319,  1010,  1996,  2110,
          1011,  2448,  8418,  1001,  1001, 18699,  1001,  1001, 25423,  2739,
          4034,  2988,  5095,  1012,  1996, 10899,  2031,  3303,  2070,  2336,
          2040,  7351,  1996,  7477, 10899,  2000, 23251,  1998,  4558,  8298,
          1012,  1031, 19802,  1035,  1014,  1033,  2859,  6731, 14338,  1997,
          1996,  1037,  1001,  1001, 24209,  2050, 11089,  1001,  1001,  1055,
         10899,  2008,  5383,  1037,  5072,  2008, 19884,  2046,  1037,  1000,
          3058,  9040,  1000,  4319,  1012,  1031, 19802,  1035,  1015,  1033,
          1996,  4034,  2056,  2008,  1996,  2236,  3447,  1997,  3737,  3565,
          1001,  1001,  4432,  1010,  1999,  1001,  1001, 28699,  2102,  1001,
          1001, 10163,  1010,  1998,  1053,  1001,  1001, 25423,  1001,  1001,
          2743,  2102,  1001,  1001,  1999,  2063,  1006,  1037,  1001,  1001,
          1053,  1001,  1001,  9033,  1001,  1001,  1053,  1007,  2038,  3641,
          2019,  4812,  2011,  3737,  2491,  6736,  1998,  2097,  2713,  3463,
          2004,  2574,  2004,  2027,  2024,  2800,  1012,  1031, 19802,  1035,
          1016,  1033,  1996,  1037,  1001,  1001,  1053,  1001,  1001,  9033,
          1001,  1001,  1053,  2106,  2025,  7487,  1996,  2171,  1997,  1996,
         10899,  1005,  3135,  1010,  8418,  1001,  1001, 18699,  1001,  1001,
         25423,  2056,  1012,  1031, 19802,  1035,  1017,  1033,  1057,  1012,
          1055,  1012,  3808,  4584, 17912,  7383,  2055,  1018,  1012,  1016,
          2454,  1997,  1996,  2822,  1011,  2081, 10899,  9317,  1012,  1031,
         19802,  1035,  1018,  1033,  6529,  2031,  2179,  1996,  3811,  2759,
          6209,  9121,  3397,  1037,  5072,  2008,  1010,  2320, 18804,  1001,
          1001,  8945,  2140,  1001,  1001,  1045,  5422,  1010, 19884,  2046,
          1996, 11704,  1000,  3058,  9040,  1000,  4319,  1043,  1001,  1001,
          1044,  1001,  1001,  1038,  1006, 13091,  1011,  1044,  1001,  1001,
         21076,  3217,  1001,  1001,  1060,  2100,  2021,  1001,  1001,  1061,
          2527,  1001,  1001,  8915,  1007,  1010,  3660,  4702,  1001,  1001,
          2365,  1010,  1037, 14056,  2007,  1996,  1057,  1012,  1055,  1012,
          7325,  4031,  3808,  3222,  1006, 18133,  1001,  1001,  8040,  1007,
          1010,  2409, 13229,  1012,  1031, 19802,  1035,  1019,  1033,  1000,
          2336,  2040, 10577,  1996, 17530,  2064,  2468, 16571,  1001,  1001,
          2000,  2015,  1001,  1001,  1041,  1010,  4503, 16464,  6245,  2030,
          2031, 18634,  1001,  1001,  1055,  1010,  1000,  1037, 18133,  1001,
          1001,  8040,  4861,  7420,  1012,  1031, 19802,  1035,  1020,  1033,
          1996,  2840,  1011,  1998,  1011,  7477, 17530,  1010,  2029,  2031,
          2042,  4855,  2144,  2258,  2012,  2350,  1057,  1012,  1055,  1012,
          7027,  5324,  2104,  1996,  2171,  1000,  1037,  1001,  1001, 24209,
          2050, 11089,  1001,  1001,  1055,  1010,  1000,  2031,  2036,  2042,
          5500,  1999,  2660,  2104,  1996,  2171,  1000,  8026,  1001,  1001,
          2139,  1001,  1001,  1041,  2480,  2022,  1001,  1001, 14997,  1012,
          1000,  1031, 19802,  1035,  1021,  1033,  1996,  8026,  1001,  1001,
          2139,  1001,  1001,  1041,  2480, 10899,  2020,  7383,  9857,  2011,
          4940,  1011,  2241, 17716,  6960,  1052,  1001,  1001,  5939,  1012,
          5183,  1012,  2044,  2093,  2336,  1999,  2660,  7351,  2312, 12450,
          1997,  1996, 17530,  1998,  2020,  2902,  1001,  1001,  1045,  5422,
          1012,  1031, 19802,  1035,  1022,  1033,  1000,  1045,  2001,  2061,
         10363,  2138,  1045,  2245,  2016,  2347,  1005,  1056,  2183,  2000,
          2191,   102]])
example of tgt id lists:  tensor([[  101,  2110,  1011,  2448,  2739,  4034,  1024,  2859,  4449,  2019,
          4812,  2011,  3737,  2491,  6736,  1012,  1031,  1060,  1035, 19802,
          1033,  2336,  2040, 10577,  1996, 17530,  2064,  2468, 16571,  1001,
          1001,  2000,  2015,  1001,  1001,  1041,  2030,  2031, 18634,  1001,
          1001,  1055,  1012,  1031,  1060,  1035, 19802,  1033,  9121,  1001,
          1001,  1055,  2024,  2853,  2004,  1037,  1001,  1001, 24209,  2050,
         11089,  1001,  1001,   102]])
total query dataset len : 287113
***** load cnndm_data dev src dataset*****
13368it [00:00, 227334.10it/s]
13368it [00:00, 1676567.77it/s]
***** load cnndm_data dev tgt dataset*****
example of src text:  ( CNN ) Outside of Israeli politics , Isaac Her ##zo ##g is not a well - known name . That may change on March 17 , when Israeli ##s head to the polls for election day . In the final round of polling before the elections , Her ##zo ##g ' s Zionist Union party is in the lead , holding a four - seat edge over Prime Minister Benjamin Net ##any ##ahu ' s Li ##ku ##d party . [SEP_0] " I believe in a certain type of leadership that is not always customary in this region . I ' m not a general . I don ' t give orders . I know how to work together , " he says . [SEP_1] Throughout the campaign , Her ##zo ##g has been seen as an under ##dog , lacking the ch ##aris ##ma and the English flu ##ency of Net ##any ##ahu . Her ##zo ##g says that doesn ' t bother him at all . [SEP_2] " I have always suffered from a certain under ##est ##imation , " Her ##zo ##g said , " and I have always surprised . " He promised , " I will surprise again , and I will show my leadership and s ##tam ##ina . " [SEP_3] Her ##zo ##g began his political career in 2003 , when he first won a seat in the K ##ness ##et with the Labor Party . He held a variety of ministerial positions , including minister of housing and construction , minister of tourism , and minister of welfare and social services , before becoming leader of the Labor Party in 2013 . In those elections , he also became the leader of the opposition , as Benjamin Net ##any ##ahu won another term as prime minister . [SEP_4] But when Net ##any ##ahu called for early elections in 2014 , Her ##zo ##g p ##eg ##ged his bid for the premiership on social reform . [SEP_5] " What I run for is social justice . I will change the nature of the division of wealth in a fair and more balanced way , close inequality and give a sense of purpose to the people here in the workplace , in the housing , and in the cost of living , " promised Her ##zo ##g . [SEP_6] Before the election , the issue of a nuclear Iran garnered international headlines as it further a ##gg ##ra ##vated tense relations between the White House and Net ##any ##ahu . Her ##zo ##g , in a speech almost immediately after Net ##any ##ahu ' s address to Congress , promised to work with the United States and European powers , not against , to ensure the safety of Israel . He echoed that sentiment in an interview with CNN ' s Elise Lab ##ott . [SEP_7] " A nuclear - armed Iran is dangerous to world peace , is dangerous to our region , is dangerous to Israel . As leader of Israel , I will never accept a nuclear - armed Iran . Never . And all options are on the table . " [SEP_8] In these elections , negotiations with the Palestinians haven ' t been one of the major issues , but Her ##zo ##g promised to restart the stalled peace talks with the Palestinian Authority . [SEP_9] " I will do my best to i ##gni ##te a political process with our Palestinian neighbors . . . . Although I cannot promise 100 % results , I promise 100 % effort . " [SEP_9] Her ##zo ##g comes from Israeli political royalty . His grandfather , Rabbi Yi ##tz ##hak Ha ##L ##ev ##i Her ##zo ##g , was the first chief rabbi of the state of Israel . His father , Cha ##im Her ##zo ##g , was an Army general , an ambassador to the United Nations and the president of Israel . Her ##zo ##g believes it is his destiny to be the next prime minister of Israel . [SEP_9] " What I carry with me is a unique legacy , a family legacy , but most important , an experience that brings me to be able to lead our nation . "
example of tgt text:  Poll ##s show Isaac Her ##zo ##g ' s Zionist Union party four seats ahead of Benjamin Net ##any ##ahu ' s party . [X_SEP] Israeli parliamentary elections will be on March 17 .
example of src id lists:  tensor([[  101,  1006, 13229,  1007,  2648,  1997,  5611,  4331,  1010,  7527,
          2014,  1001,  1001,  1062,  2080,  1001,  1001,  1043,  2003,  2025,
          1037,  2092,  1011,  2124,  2171,  1012,  2008,  2089,  2689,  2006,
          2233,  2459,  1010,  2043,  5611,  1001,  1001,  1055,  2132,  2000,
          1996, 14592,  2005,  2602,  2154,  1012,  1999,  1996,  2345,  2461,
          1997, 17888,  2077,  1996,  3864,  1010,  2014,  1001,  1001,  1062,
          2080,  1001,  1001,  1043,  1005,  1055, 21379,  2586,  2283,  2003,
          1999,  1996,  2599,  1010,  3173,  1037,  2176,  1011,  2835,  3341,
          2058,  3539,  2704,  6425,  5658,  1001,  1001,  2151,  1001,  1001,
          6289,  2226,  1005,  1055,  5622,  1001,  1001, 13970,  1001,  1001,
          1040,  2283,  1012,  1031, 19802,  1035,  1014,  1033,  1000,  1045,
          2903,  1999,  1037,  3056,  2828,  1997,  4105,  2008,  2003,  2025,
          2467, 16120,  1999,  2023,  2555,  1012,  1045,  1005,  1049,  2025,
          1037,  2236,  1012,  1045,  2123,  1005,  1056,  2507,  4449,  1012,
          1045,  2113,  2129,  2000,  2147,  2362,  1010,  1000,  2002,  2758,
          1012,  1031, 19802,  1035,  1015,  1033,  2802,  1996,  3049,  1010,
          2014,  1001,  1001,  1062,  2080,  1001,  1001,  1043,  2038,  2042,
          2464,  2004,  2019,  2104,  1001,  1001,  3899,  1010, 11158,  1996,
         10381,  1001,  1001, 10488,  2015,  1001,  1001,  5003,  1998,  1996,
          2394, 19857,  1001,  1001,  4372,  5666,  1997,  5658,  1001,  1001,
          2151,  1001,  1001,  6289,  2226,  1012,  2014,  1001,  1001,  1062,
          2080,  1001,  1001,  1043,  2758,  2008,  2987,  1005,  1056,  8572,
          2032,  2012,  2035,  1012,  1031, 19802,  1035,  1016,  1033,  1000,
          1045,  2031,  2467,  4265,  2013,  1037,  3056,  2104,  1001,  1001,
          9765,  1001,  1001, 10047,  3370,  1010,  1000,  2014,  1001,  1001,
          1062,  2080,  1001,  1001,  1043,  2056,  1010,  1000,  1998,  1045,
          2031,  2467,  4527,  1012,  1000,  2002,  5763,  1010,  1000,  1045,
          2097,  4474,  2153,  1010,  1998,  1045,  2097,  2265,  2026,  4105,
          1998,  1055,  1001,  1001, 17214,  1001,  1001, 27118,  1012,  1000,
          1031, 19802,  1035,  1017,  1033,  2014,  1001,  1001,  1062,  2080,
          1001,  1001,  1043,  2211,  2010,  2576,  2476,  1999,  2494,  1010,
          2043,  2002,  2034,  2180,  1037,  2835,  1999,  1996,  1047,  1001,
          1001, 23384,  1001,  1001,  3802,  2007,  1996,  4450,  2283,  1012,
          2002,  2218,  1037,  3528,  1997, 18645,  4460,  1010,  2164,  2704,
          1997,  3847,  1998,  2810,  1010,  2704,  1997,  6813,  1010,  1998,
          2704,  1997,  7574,  1998,  2591,  2578,  1010,  2077,  3352,  3003,
          1997,  1996,  4450,  2283,  1999,  2286,  1012,  1999,  2216,  3864,
          1010,  2002,  2036,  2150,  1996,  3003,  1997,  1996,  4559,  1010,
          2004,  6425,  5658,  1001,  1001,  2151,  1001,  1001,  6289,  2226,
          2180,  2178,  2744,  2004,  3539,  2704,  1012,  1031, 19802,  1035,
          1018,  1033,  2021,  2043,  5658,  1001,  1001,  2151,  1001,  1001,
          6289,  2226,  2170,  2005,  2220,  3864,  1999,  2297,  1010,  2014,
          1001,  1001,  1062,  2080,  1001,  1001,  1043,  1052,  1001,  1001,
          1041,  2290,  1001,  1001, 16216,  2094,  2010,  7226,  2005,  1996,
         11264,  2006,  2591,  5290,  1012,  1031, 19802,  1035,  1019,  1033,
          1000,  2054,  1045,  2448,  2005,  2003,  2591,  3425,  1012,  1045,
          2097,  2689,  1996,  3267,  1997,  1996,  2407,  1997,  7177,  1999,
          1037,  4189,  1998,  2062, 12042,  2126,  1010,  2485, 16440,  1998,
          2507,  1037,  3168,  1997,  3800,  2000,  1996,  2111,  2182,  1999,
          1996, 16165,  1010,  1999,  1996,  3847,  1010,  1998,  1999,  1996,
          3465,  1997,  2542,  1010,  1000,  5763,  2014,  1001,  1001,  1062,
          2080,   102]])
example of tgt id lists:  tensor([[  101,  8554,  1001,  1001,  1055,  2265,  7527,  2014,  1001,  1001,
          1062,  2080,  1001,  1001,  1043,  1005,  1055, 21379,  2586,  2283,
          2176,  4272,  3805,  1997,  6425,  5658,  1001,  1001,  2151,  1001,
          1001,  6289,  2226,  1005,  1055,  2283,  1012,  1031,  1060,  1035,
         19802,  1033,  5611,  5768,  3864,  2097,  2022,  2006,  2233,  2459,
          1012,   102,     0,     0,     0,     0,     0,     0,     0,     0,
             0,     0,     0,     0]])
total query dataset len : 13368
training Diffusion LM model...
D:\app\work_app\anaconda3\local\envs\ProphetNet-master\lib\site-packages\transformers\optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning
  warnings.warn(
Iteration:   0%|          | 0/4487 [00:00<?, ?it/s]***** there are no checkpoint inoutput *****
***** Running training *****
  Max steps = %d 120000
  Gradient Accumulation steps = %d 1
Iteration:   1%|          | 51/4487 [1:38:37<148:11:35, 120.27s/it]
posted @ 2023-06-30 13:44  ︶ㄣ演戲ㄣ  阅读(33)  评论(2编辑  收藏  举报