victoriaMetrics中的一些Sao操作
victoriaMetrics中的一些Sao操作
快速获取当前时间
victoriaMetrics中有一个fasttime
库,用于快速获取当前的Unix时间,实现其实挺简单,就是在后台使用一个goroutine不断以1s为周期刷新表示当前时间的变量currentTimestamp
,获取的时候直接原子加载该变量即可。其性能约是time.Now()
的8倍。
其核心方式就是将主要任务放到后台运行,通过一个中间变量来传递运算结果,以此来通过异步的方式提升性能,但需要业务能包容一定的精度偏差。
func init() {
go func() {
ticker := time.NewTicker(time.Second)
defer ticker.Stop()
for tm := range ticker.C {
t := uint64(tm.Unix())
atomic.StoreUint64(¤tTimestamp, t)
}
}()
}
var currentTimestamp = uint64(time.Now().Unix())
// UnixTimestamp returns the current unix timestamp in seconds.
//
// It is faster than time.Now().Unix()
func UnixTimestamp() uint64 {
return atomic.LoadUint64(¤tTimestamp)
}
计算结构体的哈希值
hashUint64
函数中使用xxhash.Sum64
计算了结构体Key
的哈希值。通过unsafe.Pointer
将指针转换为*[]byte
类型,byte数组的长度为unsafe.Sizeof(*k)
,unsafe.Sizeof()
返回结构体的字节大小。
如果一个数据为固定的长度,如h的类型为uint64,则可以直接指定长度为8进行转换,如:bp:=([8]byte)(unsafe.Pointer(&h))
需要注意的是
unsafe.Sizeof()
返回的是数据结构的大小而不是其指向内容的数据大小,如下返回的slice大小为24,为slice首部数据结构SliceHeader
的大小,而不是其引用的数据大小(可以使用len获取slice引用的数据大小)。此外如果结构体中有指针,则转换成的byte中存储的也是指针存储的地址。slice := []int{1,2,3,4,5,6,7,8,9,10} fmt.Println(unsafe.Sizeof(slice)) //24
type Key struct {
Part interface{}
Offset uint64
}
func (k *Key) hashUint64() uint64 {
buf := (*[unsafe.Sizeof(*k)]byte)(unsafe.Pointer(k))
return xxhash.Sum64(buf[:])
}
将字符串添加到已有的[]byte中
使用如下方式即可:
str := "1231445"
arr := []byte{1, 2, 3}
arr = append(arr, str...)
将int64的数组转换为byte数组
直接操作了底层的SliceHeader
func int64ToByteSlice(a []int64) (b []byte) {
sh := (*reflect.SliceHeader)(unsafe.Pointer(&b))
sh.Data = uintptr(unsafe.Pointer(&a[0]))
sh.Len = len(a) * int(unsafe.Sizeof(a[0]))
sh.Cap = sh.Len
return
}
并发访问的sync.WaitGroup
并发访问的sync.WaitGroup
的目的是为了在运行时添加需要等待的goroutine
// WaitGroup wraps sync.WaitGroup and makes safe to call Add/Wait
// from concurrent goroutines.
//
// An additional limitation is that call to Wait prohibits further calls to Add
// until return.
type WaitGroup struct {
sync.WaitGroup
mu sync.Mutex
}
// Add registers n additional workers. Add may be called from concurrent goroutines.
func (wg *WaitGroup) Add(n int) {
wg.mu.Lock()
wg.WaitGroup.Add(n)
wg.mu.Unlock()
}
// Wait waits until all the goroutines call Done.
//
// Wait may be called from concurrent goroutines.
//
// Further calls to Add are blocked until return from Wait.
func (wg *WaitGroup) Wait() {
wg.mu.Lock()
wg.WaitGroup.Wait()
wg.mu.Unlock()
}
// WaitAndBlock waits until all the goroutines call Done and then prevents
// from new goroutines calling Add.
//
// Further calls to Add are always blocked. This is useful for graceful shutdown
// when other goroutines calling Add must be stopped.
//
// wg cannot be used after this call.
func (wg *WaitGroup) WaitAndBlock() {
wg.mu.Lock()
wg.WaitGroup.Wait()
// Do not unlock wg.mu, so other goroutines calling Add are blocked.
}
// There is no need in wrapping WaitGroup.Done, since it is already goroutine-safe.
定时器池
高频次创建timer
会消耗一定的性能,为了减少某些情况下的性能损耗,可以使用sync.Pool
来回收利用创建的timer
// Get returns a timer for the given duration d from the pool.
//
// Return back the timer to the pool with Put.
func Get(d time.Duration) *time.Timer {
if v := timerPool.Get(); v != nil {
t := v.(*time.Timer)
if t.Reset(d) {
logger.Panicf("BUG: active timer trapped to the pool!")
}
return t
}
return time.NewTimer(d)
}
// Put returns t to the pool.
//
// t cannot be accessed after returning to the pool.
func Put(t *time.Timer) {
if !t.Stop() {
// Drain t.C if it wasn't obtained by the caller yet.
select {
case <-t.C:
default:
}
}
timerPool.Put(t)
}
var timerPool sync.Pool
访问限速
victoriaMetrics的vminsert
作为vmagent
和vmstorage
之间的组件,接收vmagent
的流量并将其转发到vmstorage
。在vmstorage
卡死、处理过慢或下线的情况下,有可能会导致无法转发流量,进而造成vminsert
CPU和内存飙升,造成组件故障。为了防止这种情况,vminsert
使用了限速器,当接收到的流量激增时,可以在牺牲一部分数据的情况下保证系统的稳定性。
victoriaMetrics
的源码中对限速器有如下描述:
Limit the number of conurrent f calls in order to prevent from excess memory usage and CPU thrashing
这里使用了一种基于token的限速器,包含两个参数:maxConcurrentInserts
和maxQueueDuration
,前者给出了突发情况下可以处理的最大请求数,后者给出了某个请求的最大超时时间。
可以看到限速器使用了指标来指示当前的限速状态。同时使用2*cgroup.AvailableCPUs()
(即runtime.GOMAXPROCS(-1)*2
)来设置默认的maxConcurrentInserts
。
当该限速器用在处理如http请求时,该限速器并不能限制底层上送的请求,其限制的是对请求的处理。在高流量业务处理中,这也是最消耗内存的地方,通常包含数据读取、内存申请拷贝等。底层的数据受
/proc/sys/net/core/somaxconn
和socket缓存区的限制。
package writeconcurrencylimiter
import (
"flag"
"sync"
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/timerpool"
"github.com/VictoriaMetrics/metrics"
)
var (
maxConcurrentInserts = flag.Int("maxConcurrentInserts", 2*cgroup.AvailableCPUs(), "The maximum number of concurrent insert requests. "+
"Set higher value when clients send data over slow networks. "+
"Default value depends on the number of available CPU cores. It should work fine in most cases since it minimizes resource usage. "+
"See also -insert.maxQueueDuration")
maxQueueDuration = flag.Duration("insert.maxQueueDuration", time.Minute, "The maximum duration to wait in the queue when -maxConcurrentInserts "+
"concurrent insert requests are executed")
)
// 初始化channel,大小为maxConcurrentInserts
func initConcurrencyLimitCh() {
concurrencyLimitCh = make(chan struct{}, *maxConcurrentInserts)
}
var (
concurrencyLimitCh chan struct{}
concurrencyLimitChOnce sync.Once
)
// 获取token
func incConcurrency() bool {
concurrencyLimitChOnce.Do(initConcurrencyLimitCh)
select {
case concurrencyLimitCh <- struct{}{}:
return true
default:
}
concurrencyLimitReached.Inc()
t := timerpool.Get(*maxQueueDuration) //这里使用一个定时器来计算timeout的指标
select {
case concurrencyLimitCh <- struct{}{}:
timerpool.Put(t)
return true
case <-t.C: // 超时之后会增加timeout指标计数,并返回false,是否继续尝试需要根据实际需求而定。
timerpool.Put(t)
concurrencyLimitTimeout.Inc()
return false
}
}
// 释放token
func decConcurrency() {
<-concurrencyLimitCh
}
var (
concurrencyLimitReached = metrics.NewCounter(`vm_concurrent_insert_limit_reached_total`)
concurrencyLimitTimeout = metrics.NewCounter(`vm_concurrent_insert_limit_timeout_total`)
_ = metrics.NewGauge(`vm_concurrent_insert_capacity`, func() float64 {
concurrencyLimitChOnce.Do(initConcurrencyLimitCh)
return float64(cap(concurrencyLimitCh))
})
_ = metrics.NewGauge(`vm_concurrent_insert_current`, func() float64 {
concurrencyLimitChOnce.Do(initConcurrencyLimitCh)
return float64(len(concurrencyLimitCh))
})
)
优先级控制
victoriaMetrics的pacelimiter
库实现了优先级控制。主要方法由Inc
、Dec
和WaitIfNeeded
。低优先级任务需要调用WaitIfNeeded
方法,如果此时有高优先级任务(调用Inc
方法),则低优先级任务需要等待高优先级任务结束(调用Dec
方法)之后才能继续执行。
// PaceLimiter throttles WaitIfNeeded callers while the number of Inc calls is bigger than the number of Dec calls.
//
// It is expected that Inc is called before performing high-priority work,
// while Dec is called when the work is done.
// WaitIfNeeded must be called inside the work which must be throttled (i.e. lower-priority work).
// It may be called in the loop before performing a part of low-priority work.
type PaceLimiter struct {
mu sync.Mutex
cond *sync.Cond
delaysTotal uint64
n int32
}
// New returns pace limiter that throttles WaitIfNeeded callers while the number of Inc calls is bigger than the number of Dec calls.
func New() *PaceLimiter {
var pl PaceLimiter
pl.cond = sync.NewCond(&pl.mu)
return &pl
}
// Inc increments pl.
func (pl *PaceLimiter) Inc() {
atomic.AddInt32(&pl.n, 1)
}
// Dec decrements pl.
func (pl *PaceLimiter) Dec() {
if atomic.AddInt32(&pl.n, -1) == 0 {
// Wake up all the goroutines blocked in WaitIfNeeded,
// since the number of Dec calls equals the number of Inc calls.
pl.cond.Broadcast()
}
}
// WaitIfNeeded blocks while the number of Inc calls is bigger than the number of Dec calls.
func (pl *PaceLimiter) WaitIfNeeded() {
if atomic.LoadInt32(&pl.n) <= 0 {
// Fast path - there is no need in lock.
return
}
// Slow path - wait until Dec is called.
pl.mu.Lock()
for atomic.LoadInt32(&pl.n) > 0 {
pl.delaysTotal++
pl.cond.Wait()
}
pl.mu.Unlock()
}
// DelaysTotal returns the number of delays inside WaitIfNeeded.
func (pl *PaceLimiter) DelaysTotal() uint64 {
pl.mu.Lock()
n := pl.delaysTotal
pl.mu.Unlock()
return n
}
本文来自博客园,作者:charlieroro,转载请注明原文链接:https://www.cnblogs.com/charlieroro/p/16195044.html