Zzangg  

第六章 信号和信号处理

1. 信号和中断

  • “中断”是从I/O设备或协处理器发送到CPU的外部请求,它将CPU从正常执行转移 到中断处理。与发送给CPU的中断请求一样,“信号”是发送给进程的请求,将进程从正常执行转移到中断处理。

  • “中断”是发送给“进程”的事件,它将“进程”从正常活动转移到其他活动,称为“中断处理”。“进程”可在完成“中断”处理后恢复正常活动。根据来源,中断可分为三类:

  1. 来自硬件的中断:终端、间隔定时器的“Ctrl+C”组合键等。

  2. 来自其他人的中断:kill(pid,SIG#), death_of_child等。

  3. 自己造成的中断:除以0、无效地址等。

  4. 进程的陷阱错误

  • 每个进程中断都被转换为一个唯一ID号,发送给进程。与多种类的人员中断不同,我们始终可限制在一个进程中的中断的数量。Unix/Linux中的进程中断称为信号,编号为1到31。进程的PROC结构体中有对应每个信号的动作函数,进程可在收到信号后执行该动作函数。与人员类似,进程也可屏蔽某些类型的信号,以推迟处理。必要时,进程还可能会修改信号动作函数。

2. Unix/Linux信号示例

  1. 按“Ctrl+C”组合键通常会导致当前运行的进程终止。原因如下:Ctrl+C组合键会生成一个键盘硬件中断。键盘中断处理程序将Ctrl+C组合键转换为SIGINT(2)信号,发送给终端上的所有进程,并唤醒等待键盘输入的进程。在内核模式下,每个进程都要检查和处理未完成的信号。进程对大多数信号的默认操作是调用内核的kexit(exitValue)函数来终止。在Linux中,exitValue的低位字节是导致进程终止的信号编号。

  2. 用户可使用nohup a.out &命令在后台运行一个程序。即使在用户退出后,进程仍将继续运行。nobup命令会使sh像往常一样复刻子进程来执行程序,但是子进程会忽略SIGHuP(1)信号。当用户退出时,sh会向与终端有关的所有进程发送一个SIGHUP信号。后台进程在接收到这一信号后,会忽略它并继续运行。为防止后台进程使用终端进行I/O,后台进程通常会断开与终端的连接(通过将其文件描述符0、1、2重定向到/dev/null),使其完全不受任何面向终端信号的影响。

  3. 用户再次登录时也许会发现(通过ps-u LTD)后台进程仍在运行。用户可以使用sh命令kill pid (or kill -s 9 pid)杀死该进程。之所以是9个信号是因为在最初的Unix中,只有9个信号。9号信号被保留为终止进程的终极手段。虽然后来的Unix/Linux系统将信号编号扩展到了31,但是信号编号9的含义仍然保留了下来。

3. Unix/Linux中的信号处理

  • Unix/Linux支持的31种信号,在signal.h文件中均有定义,每种信号都有一个符号名。

  • 来自硬件中断的信号:在进程执行过程中,一些硬件中断被转换为信号发送给进程。硬件信号示例是中断键(CtrI+C),它产生一个SIGINT(2)信号。
    间隔定时器,当它的时间到期时,会生成一个SIGALRM( 14),SIGVTALRM(26)或SIGPROF (27)信号。

  • 其他硬件错误,如总线错误、IO陷阱等。

  • 来自异常的信号:当用户模式下的进程遇到异常时,会陷入内核模式,生成一个信号,并发送给自己。常见的陷阱信号有SIGFPE(8),表示浮点异常(除以0),最常见也是最可怕的是SIGSEGV(11),表示段错误,等等。

  • 来自其他进程的信号:进程可使用kill(pid, sig)系统调用向pid标识的目标进程发送信号。读者可以尝试以下实验。在 Linux 下,运行简单的C程序main(){ while(1); }使进程无限循环。从另一个(X-window)终端,使用ps -u查找循环进程pid。然后输入sh命令kill -s 11 pid循环进程会因为段错误而死亡。当某进程被某个信号终止时,它的exitValue就包含这个信号编号。父进程sh只是将死亡子进程的信号编号转换为一个错误字符串。

  • Unix/Linux支持31种不同的信号,每种信号在 signal.h文件中都有定义:

点击查看代码

#define SIGHUP
#define SIGINT
#define SIGQUIT
#define SIGILL 
#define SIGTRAP
#define SIGABRT 
#define SIGIOT
#define SIGBUS
#define SIGFPE
#define SIGKILL
#define SIGUSR1
#define SIGSEGV
#define SIGUSR2
#define SIGPIPE
 #define SIGALRM
#define SIGTERM
#define SIGSTKFLT
#define SIGCHLD
#define SIGCONT
#define SIGSTOP
#define SIGTSTP
#define SIGTTIN
#define SIGTTOU
#define SIGURG
#define SIGXCPU
#define SIGXFSZ
#define SIGVTALRM
#define SIGPROF
#define SIGWINCH
#define SIGPOLL
#define SIGPWR
#define SIGSYS
//每种信号都有一个符号名


4. 信号处理步骤

  • 当某进程处于内核模式时,会检查信号并处理未完成的信号。如果某信号有用户安装的捕捉函数,该进程会先清除信号,获取捕捉函数地址,对于大多数陷阱信号,则将已安装的捕捉函数重置为 DEFault。然后,它会在用户模式下返回,以执行捕捉函数,以这种方式篡改返回路径。当捕捉函数结束时,它会返回到最初的中断点,即它最后进入内核模式的地方。

  • 重置用户安装的信号捕捉函数:用户安装的陷阱相关信号捕捉函数用于处理用户代码中的陷阱错误。由于捕捉函数也在用户模式下执行,因此可能会再次出现同样的错误。如果是这样,该进程最终会陷入无限循环,一直在用户模式和内核模式之间跳跃。为了防止这种情况,Unix 内核通常会在允许进程执行捕捉函数之前先将处理函数重置为 DEFault。这意味着用户安装的捕捉函数只对首次出现的信号有效。

  • 信号和唤醒:在Unix/Linux,内核中有两种 SLEEP进程;深度休眠进程和浅度休眠进程。前一种进程不可中断,而后一种进程可由信号中断。如果某进程处于不可中断的SLEEP 状态,到达的信号(必须来自硬件中断或其他进程)不会唤醒进程。如果它处于可中断的SLEEP状态,到达的信号将会唤醒它。

5. 信号与异常

Unix信号最初设计用于以下用途:

  • 作为进程异常的统一处理方法:当进程遇到异常时,它会陷人内核模式,将陷阱原因转换为信号编号,并将信号发送给自己。如果在内核模式下发生异常,内核只打印一条PANIC错误消息,然后就停止了。如果在用户模式下发生异常,则进程通常会终止,并以内存转储进行调试。

  • 让进程通过预先安装的信号捕捉函数处理用户模式下的程序错误。这类似于MVS[IBM MVS]中的 ESPIE宏。

  • 在特殊情况下,它会让某个进程通过信号杀死另一个进程。注意,这里所说的杀死并不是直接杀死某个进程,而只是向目标进程发出“死亡”请求。

6. 信号用作IPC

Linux为每个进程提供了三种不同类型的间隔计时器,可用作进程计时的虚拟时钟。间隔定时器由settimer()系统调用创建。getitimer()系统调用返回间隔定时器的状态。有三类间隔定时器,分别是:

  1. ITIMER_REAL: 实时减少,在到期时生成一个SIGALRM(14)信号。
  2. ITIMER_VIRTUAL: 仅当进程在用户模式下执行时减少,在到期时生成一个SIGVTALRM(26)信号。
  3. ITIMER_PROF: 当进程正在用户模式和系统模式下执行时减少。在到期时生成一个SIGPROF(27)信号。

7. Linux中的IPC

管道和FIFO

  • 管道的主要用途是连接一对管道写进程和读进程。管道写进程可将数据写入管道,读进程可从管道中读取数据。管道控制机制要对管道读写操作进行同步控制。未命名管道供相关进程使用。命名管道是FIFO的,可供不相关进程使用。在 Linux中的管道

  • 读取操作为同步和阻塞。如果管道仍有写进程但没有数据,读进程会进行等待。

信号

  • 进程可使用 kill 系统调用向其他进程发送信号,其他进程使用信号捕捉函数处理信号。将信号用作IPC的一个主要缺点是信号只是用作通知,不含任何信息内容。

线程同步机制

  • Linux 不区分进程和线程。在 Linux中,进程是共享某些公共资源的线程。如果是使用有共享地址空间的clone(系统调用创建的进程,它们可使用互斥量和条件变量通过共享内存进行同步通信。另外,常规进程可添加到共享内存,使它们可作为线程进行同步。

8. REAL模式间隔定时器

  • 在一些地方,信号被归类为进程间的通信机制。基本原理是一个进程可以向另一个进程发送信号,使它执行预先安装的信号处理函数。由于以下原因,这种分类即使不算不恰当也颇具争议。

  • 该机制并不可靠,因为可能会丢失信号。每个信号由位向量中的一个位表示,只能记录一个信号的一次出现。如果某个进程向另一个进程发送两个或多个相同的信号,它们可能只在接收PROC中出现一次。实时信号被放入队列,并保证按接收顺序发送,但操作系统内核可能不支持实时信号。

  • 竞态条件:在处理信号之前,进程通常会将信号处理函数重置为DEFault。要想捕捉同一信号的再次出现,进程必须在该信号再次到来之前重新安装捕捉函数。否则,下一个信号可能会导致该进程终止。在执行信号捕捉函数时,虽然可以通过阻塞同一信号来防止竞态条件,但是无法防止丢失信号。

代码实践:

  1. t7.c段错误捕捉函数
点击查看代码
#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<signal.h>
#include<setjmp.h>
jmp_buf env;
int count = 0;
void handler(int sig,siginfo_t *siginfo,void *context)
{
printf("handler:sig=&d from PID=%d UID=%d count=%d\n",sig,siginfo->si_pid,siginfo->si_uid,++count);
if (count>=4)
longjmp(env,1234);
}
int BAD()
{
int *ip=0;
printf("in BAD():try to dereference NULL pointer\n");
*ip=123;
printf("should not see this line\n");
}
int main(int argc,char *argv[])
{
int r;
struct sigaction act;
memset (&act,0,sizeof(act));
act.sa_sigaction = &handler;
act.sa_flags=SA_SIGINFO;
sigaction(SIGSEGV, &act,NULL);
if((r=setjmp(env))==0)
BAD();
else
printf("proc %d survived SEGMENTATION FAULT:r=%d\n",getpid(),r);
printf("proc %d looping\n");
while(1);
}


image

  1. 实现一个消息的IPC
点击查看代码
#include<stdio.h>
#include<signal.h>
#include<string.h>
#define LEN 64
int ppipe[2];
int pid;
char line[LEN];
int parent()
{
printf("parent %d running\n",getpid());
close(ppipe[0]);
while(1){
printf("parent %d: input a line : \n",getpid());
fgets(line,LEN,stdin);
line[strlen(line)-1]=0;
printf("parent %d write to pipe\n",getpid());
write(ppipe[1],line,LEN);
printf("parent %d send signal 10 to %d\n",getpid(),pid);
kill(pid,SIGUSR1);
}
}
void chandler(int sig)
{
printf("\nchild %d got an interrupt sig=%d\n",getpid(),sig);
read(ppipe[0],line,LEN);
printf("child %d get a message = %s\n",getpid(),line);
}
int child()
{
char msg[LEN];
int parent = getppid();
printf("child %d running\n",getpid());
close(ppipe[1]);
signal(SIGUSR1,chandler);
while(1);
}
int main()
{
pipe(ppipe);
pid=fork();
if(pid)
parent();
else
child();
}

image

  1. sigaction函数
  • 检查或修改与指定信号相关联的处理动作(可同时两种操作)执行该程序时,ctrl+c,第一次不会导致程序的结束。而是继续执行,当用户再次执行ctrl+c的时候,程序采用结束。
点击查看代码
#include <stdio.h>  
#include <signal.h>  
  
  
void WrkProcess(int nsig)  
{  
        printf("WrkProcess .I get signal.%d threadid:%d/n",nsig,pthread_self());  
  
  
        int i=0;  
        while(i<5){  
                printf("%d/n",i);  
                sleep(1);  
                i++;  
        }  
}  
  
int main()  
{  
        struct sigaction act,oldact;  
        act.sa_handler  = WrkProcess;  
        act.sa_flags = SA_NODEFER | SA_RESETHAND;     
  
        sigaction(SIGINT,&act,&oldact);  
  
        printf("main threadid:%d/n",pthread_self());  
  
        while(1)sleep(5);  
  
        return 0;  
}  

image

posted on 2022-10-28 10:41  Zzangg  阅读(24)  评论(0编辑  收藏  举报