xgboost参数调优的几个地方
tree ensemble里面最重要就是防止过拟合。
min_child_weight是叶子节点中样本个数乘上二阶导数后的加和,用来控制分裂后叶子节点中的样本个数。样本个数过少,容易过拟合。
subsample是行采样,设置的越小,每棵树之间的使用的样本数就越不相同,数学上有证明,这样模型的variance会越小。
colsample_bytree是列采样,设置的越小,树之间使用的特征差异越大,也是用来降低模型variance的。
由于我们同时训练上千个模型,所以在XGBoost里面加入了一个逻辑。对不同大小的训练数据,设置不同的树颗数。该段代码在xgboost_main.cpp中。这样做对效果提升挺明显了,如果所有的GBDT模型都设置一样的树颗数,当这个值过大时,会导致很多小训练样本的GBDT模型过拟合。当这个值过小时,又会导致大训练样本的GBDT模型欠拟合。
具体可以看这篇文章:
https://johnnygambler.github.io/2017/01/08/xgboost%E5%AE%9E%E6%88%98/
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!